Treffer: THE COMBINATORIAL CODE AND THE GRAPH RULES OF DALE NETWORKS.
Weitere Informationen
We describe the combinatorics of equilibria and steady states of neurons in threshold-linear networks that satisfy Dale's law. The combinatorial code of a Dale network is characterized in terms of two conditions: (i) a condition on the network connectivity graph, and (ii) a spectral condition on the synaptic matrix. We find that in the weak coupling regime the combinatorial code depends only on the connectivity graph, and not on the particulars of the synaptic strengths. Moreover, we prove that the combinatorial code of a weakly coupled network is a sublattice, and we provide a learning rule for encoding a sublattice in a weakly coupled excitatory network. In the strong coupling regime we prove that the combinatorial code of a generic Dale network is intersection-complete and is therefore a convex code, as is common in some sensory systems in the brain. [ABSTRACT FROM AUTHOR]
Copyright of SIAM Journal on Applied Mathematics is the property of Society for Industrial & Applied Mathematics and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)