Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: On the Performance Comparison of Intelligent Control Strategies for Lithium Battery Chargers †.

Title:
On the Performance Comparison of Intelligent Control Strategies for Lithium Battery Chargers †.
Source:
Engineering Proceedings; 2024, Vol. 77 Issue 1, p4, 10p
Database:
Complementary Index

Weitere Informationen

Lithium-ion batteries have become a beacon in modern energy storage, powering from small electronic devices to electric vehicles (EVs) and critical medical equipment. Since their commercial introduction in the 1990s, significant advancements in materials science and engineering have enhanced battery capacity, safety, and lifespan. However, the complexity of lithium-ion battery dynamics has necessitated the development of advanced charging and control strategies to optimize performance, safety, and longevity. This work proposes a comparative analysis of three advanced control methods for lithium-ion battery charging: reinforcement learning, fuzzy logic, and classic proportional–integral–derivative (PID) control. Traditional charging methods often fail to address the complexities of battery dynamics, leading to suboptimal performance. Our study evaluates these intelligent control strategies using MATLAB-Simulink simulations to enhance charging efficiency, speed, and battery lifespan. The findings indicate that reinforcement learning offers superior adaptability, fuzzy logic provides robust handling of nonlinearity, and PID control ensures reliable performance with minimal computational resources. [ABSTRACT FROM AUTHOR]

Copyright of Engineering Proceedings is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)