Treffer: PYTHON BIBLIOTEKE ZA RAD SA PRAVILIMA.
Weitere Informationen
This paper presents a short review of rule-based systems (an artificial intelligence subfield), with a special emphasis on the tools necessary for their development. The main goal is to provide an analysis and overview of popular Python libraries used for developing such systems. The paper begins with a theoretical overview of the basic concepts used in the development of rule-based systems. Special attention is given to the analysis of three Python libraries: Pyke, Experta, and Durable rules. The practical part of the paper is illustrated through a demonstration example - the development of a system to improve operational processes in a ballet studio. This example demonstrates how rules can be implemented using each of these libraries. Finally, a comparative analysis of these libraries is conducted with each one’s pros and cons highlighted. [ABSTRACT FROM AUTHOR]
U ovom radu se daje kratak prikaz oblasti sistema zasnovanih na pravilima kao podoblasti veštačke inteligencije, sa posebnim naglaskom na alate potrebne za njihov razvoj. Glavni cilj je pružiti analizu i pregled popularnih Python biblioteka koje se koriste za razvoj ovakvih sistema. Rad počinje teorijskim osvrtom na osnovne koncepte koji se koriste prilikom razvoja sistema zasnovanih na pravilima. Posebna pažnja je posvećena analizi tri Python biblioteke: Pyke, Experta i Durable rules. Praktični deo rada ilustruje se kroz demonstracioni primer - razvoj sistema za unapređenje operativnih procesa u baletskom studiju. Ovaj primer demonstrira kako se pravila mogu implementirati korišćenjem svake od navedenih biblioteka. Na kraju, izvršena je uporedna analiza ovih biblioteka sa istaknutim prednostima i manama svake od njih. [ABSTRACT FROM AUTHOR]
Copyright of InfoM is the property of Belgrade University, Faculty of Organizational Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)