Treffer: A New Automated System Approach to Detect Digital Forensics using Natural Language Processing to Recommend Jobs and Courses.

Title:
A New Automated System Approach to Detect Digital Forensics using Natural Language Processing to Recommend Jobs and Courses.
Source:
Journal of Cybersecurity & Information Management; 2025, Vol. 16 Issue 1, p231-242, 12p
Database:
Complementary Index

Weitere Informationen

A resume is the first impression between you and a potential employer. Therefore, the importance of a resume can never be underestimated. Selecting the right candidates for a job within a company can be a daunting task for recruiters when they have to review hundreds of resumes. To reduce time and effort, we can use NLTK and Natural Language Processing (NLP) techniques to extract essential data from a resume. NLTK is a free, open source, community-driven project and the leading platform for building Python programs to work with human language data. To select the best resume according to the company's requirements, an algorithm such as KNN is used. To be selected from hundreds of resumes, your resume must be one of the best. Therefore, our work also focuses on creating an automated system that can recommend the right skills and courses to help the desired candidates by using Natural Language Processing to analyze writing style (linguistic fingerprints) and also used to measure style and analyze word frequency from the submitted resume. Through semantic search and relying on individual resumes, forensic experts can query the huge semantic datasets provided to companies and institutions and facilitate the work of government forensics by obtaining official institutional databases. With global cybercrime and the increase in applicants seeking work and leveraging their multilingual data, Natural Language Processing (NLP) is making it easier. Through the important relationship between Natural Language Processing (NLP) and digital forensics, NLP techniques are increasingly being used to enhance investigations involving digital evidence and leverage the support of NLP for open-source data by analyzing massive amounts of public data. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Cybersecurity & Information Management is the property of American Scientific Publishing Group and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)