Treffer: Syntax and Domain Aware Model for Unsupervised Program Translation.
Weitere Informationen
There is growing interest in software migration as the development of software and society. Manually migrating projects between languages is error-prone and expensive. In recent years, researchers have begun to explore automatic program translation using supervised deep learning techniques by learning from large-scale parallel code corpus. However, parallel resources are scarce in the programming language domain, and it is costly to collect bilingual data manually. To address this issue, several unsupervised programming translation systems are proposed. However, these systems still rely on huge monolingual source code to train, which is very expensive. Besides, these models cannot perform well for translating the languages that are not seen during the pre-training procedure. In this paper, we propose SDA-Trans, a syntax and domain-aware model for program translation, which leverages the syntax structure and domain knowledge to enhance the cross-lingual transfer ability. SDA-Trans adopts unsupervised training on a smaller-scale corpus, including Python and Java monolingual programs. The experimental results on function translation tasks between Python, Java, and C++ show that SDA-Trans outperforms many large-scale pre-trained models, especially for unseen language translation. [ABSTRACT FROM AUTHOR]
Copyright of ICSE: International Conference on Software Engineering is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)