Treffer: Evaluating Large Language Models in Class-Level Code Generation.
Weitere Informationen
Recently, many large language models (LLMs) have been proposed, showing advanced proficiency in code generation. Meanwhile, many efforts have been dedicated to evaluating LLMs on code generation benchmarks such as HumanEval. Although being very helpful for comparing different LLMs, existing evaluation focuses on a simple code generation scenario (i.e., function-level or statement-level code generation), which mainly asks LLMs to generate one single code unit (e.g., a function or a statement) for the given natural language description. Such evaluation focuses on generating independent and often small-scale code units, thus leaving it unclear how LLMs perform in real-world software development scenarios. To fill this knowledge gap, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e., class-level code generation. Compared with existing code generation benchmarks, it better reflects real-world software development scenarios due to it comprising broader contextual dependencies and multiple, interdependent units of code. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on the new benchmark ClassEval, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we find that all LLMs perform much worse on class-level code generation compared to the method-level. While GPT models still dominate other LLMs on class-level code generation, the performance rankings of other models on method-level code generation no longer holds for class-level code generation. Besides, most models (except GPT models) perform better when generating the class method by method; and they have the limited ability of generating dependent code. Based on our findings, we call for software engineering (SE) researchers' expertise to build more LLM benchmarks based on practical and complicated software development scenarios. [ABSTRACT FROM AUTHOR]
Copyright of ICSE: International Conference on Software Engineering is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)