Result: Implementación de metodologías de inteligencia artificial para la clasificación de nubes de puntos en el proyecto PNOA-LiDAR.
Further Information
The article focuses on the implementation of artificial intelligence (AI) methodologies for point cloud classification in the PNOA-LiDAR project of the National Geographic Institute (IGN). Since 2023, the IGN has been capturing data for the third coverage of the project, initially using classical methodologies that are slow and costly. Pilot tests and market consultations have been conducted to assess the feasibility of integrating AI, highlighting the use of Deep Learning algorithms and the Python programming language. Future phases include the automatic classification of data and the comparison of results between classical and AI methodologies to determine the effectiveness of the latter. [Extracted from the article]
El artículo se centra en la implementación de metodologías de inteligencia artificial (IA) para la clasificación de nubes de puntos en el proyecto PNOA-LiDAR del Instituto Geográfico Nacional (IGN). Desde 2023, el IGN ha estado capturando datos para la tercera cobertura del proyecto, utilizando inicialmente metodologías clásicas que resultan lentas y costosas. Se han realizado pruebas piloto y consultas al mercado para evaluar la viabilidad de integrar IA, destacando el uso de algoritmos de Deep Learning y el lenguaje de programación Python. Las fases futuras incluyen la clasificación automática de datos y la comparación de resultados entre las metodologías clásica y de IA para determinar la efectividad de esta última. [Extracted from the article]
Copyright of Mapping (1131-9100) is the property of eGeoMapping S.L. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)