Treffer: Application of AI in Date Fruit Detection—Performance Analysis of YOLO and Faster R-CNN Models.

Title:
Application of AI in Date Fruit Detection—Performance Analysis of YOLO and Faster R-CNN Models.
Source:
Computation; Jun2025, Vol. 13 Issue 6, p149, 16p
Database:
Complementary Index

Weitere Informationen

Presented study evaluates and compares two deep learning models, i.e., YOLOv8n and Faster R-CNN, for automated detection of date fruits in natural orchard environments. Both models were trained and tested using a publicly available annotated dataset. YOLO, a single-stage detector, achieved a mAP@0.5 of 0.942 with a training time of approximately 2 h. It demonstrated strong generalization, especially in simpler conditions, and is well-suited for real-time applications due to its speed and lower computational requirements. Faster R-CNN, a two-stage detector using a ResNet-50 backbone, reached comparable accuracy (mAP@0.5 = 0.94) with slightly higher precision and recall. However, its training required significantly more time (approximately 19 h) and resources. Deep learning metrics analysis confirmed both models performed reliably, with YOLO favoring inference speed and Faster R-CNN offering improved robustness under occlusion and variable lighting. Practical recommendations are provided for model selection based on application needs—YOLO for mobile or field robotics and Faster R-CNN for high-accuracy offline tasks. Additional conclusions highlight the benefits of GPU acceleration and high-resolution inputs. The study contributes to the growing body of research on AI deployment in precision agriculture and provides insights into the development of intelligent harvesting and crop monitoring systems. [ABSTRACT FROM AUTHOR]

Copyright of Computation is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)