Treffer: Transforming Building Energy Management: Sparse, Interpretable, and Transparent Hybrid Machine Learning for Probabilistic Classification and Predictive Energy Modelling.

Title:
Transforming Building Energy Management: Sparse, Interpretable, and Transparent Hybrid Machine Learning for Probabilistic Classification and Predictive Energy Modelling.
Source:
Architecture (2673-8945); Jun2025, Vol. 5 Issue 2, p24, 24p
Database:
Complementary Index

Weitere Informationen

The building sector, responsible for 40% of global energy consumption, faces increasing demands for sustainability and energy efficiency. Accurate energy consumption forecasting is essential to optimise performance and reduce environmental impact. This study introduces a hybrid machine learning framework grounded in Sparse, Interpretable, and Transparent (SIT) modelling to enhance building energy management. Leveraging the REFIT Smart Home Dataset, the framework integrates occupancy pattern analysis, appliance-level energy prediction, and probabilistic uncertainty quantification. The framework clusters occupancy-driven energy usage patterns using K-means and Gaussian Mixture Models, identifying three distinct household profiles: high-energy frequent occupancy, moderate-energy variable occupancy, and low-energy irregular occupancy. A Random Forest classifier is employed to pinpoint key appliances influencing occupancy, with a drop-in accuracy analysis verifying their predictive power. Uncertainty analysis quantifies classification confidence, revealing ambiguous periods linked to irregular appliance usage patterns. Additionally, time-series decomposition and appliance-level predictions are contextualised with seasonal and occupancy dynamics, enhancing interpretability. Comparative evaluations demonstrate the framework's superior predictive accuracy and transparency over traditional single machine learning models, including Support Vector Machines (SVM) and XGBoost in Matlab 2024b and Python 3.10. By capturing occupancy-driven energy behaviours and accounting for inherent uncertainties, this research provides actionable insights for adaptive energy management. The proposed SIT hybrid model can contribute to sustainable and resilient smart energy systems, paving the way for efficient building energy management strategies. [ABSTRACT FROM AUTHOR]

Copyright of Architecture (2673-8945) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)