Treffer: A Novel Method for Traffic Parameter Extraction and Analysis Based on Vehicle Trajectory Data for Signal Control Optimization.

Title:
A Novel Method for Traffic Parameter Extraction and Analysis Based on Vehicle Trajectory Data for Signal Control Optimization.
Source:
Applied Sciences (2076-3417); Jul2025, Vol. 15 Issue 13, p7155, 36p
Database:
Complementary Index

Weitere Informationen

As urban traffic systems become increasingly complex, traditional traffic data collection methods based on fixed detectors face challenges such as poor data quality and acquisition difficulties. Traditional methods also lack the ability to capture complete vehicle path information essential for signal optimization. While vehicle trajectory data can provide rich spatiotemporal information, its sampling characteristics present new technical challenges for traffic parameter extraction. This study addresses the key issue of extracting traffic parameters suitable for signal timing optimization from sampled trajectory data by proposing a comprehensive method for traffic parameter extraction and analysis based on vehicle trajectory data. The method comprises five modules: data preprocessing, basic feature processing, exploratory data analysis, key feature extraction, and data visualization. An innovative algorithm is proposed to identify which intersections vehicles pass through, effectively solving the challenge of mapping GPS points to road network nodes. A dual calculation method based on instantaneous speed and time difference is adopted, improving parameter estimation accuracy through multi-source data fusion. A highly automated processing toolchain based on Python and MATLAB is developed. The method advances the state of the art through a novel polygon-based trajectory mapping algorithm and a systematic multi-source parameter extraction framework specifically designed for signal control optimization. Validation using actual trajectory data containing 2.48 million records successfully eliminated 30.80% redundant data and accurately identified complete paths for 7252 vehicles. The extracted multi-dimensional parameters, including link flow, average speed, travel time, and OD matrices, accurately reflect network operational status, identifying congestion hotspots, tidal traffic characteristics, and unstable road segments. The research outcomes provide a feasible technical solution for areas lacking traditional detection equipment. The extracted parameters can directly support signal optimization applications such as traffic signal coordination, timing optimization, and congestion management, providing crucial support for implementing data-driven intelligent traffic control. This research presents a theoretical framework validated with real-world data, providing a foundation for future implementation in operational signal control systems. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)