Treffer: A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy).

Title:
A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy).
Source:
Applied Sciences (2076-3417); Jul2025, Vol. 15 Issue 13, p7400, 27p
Geographic Terms:
Database:
Complementary Index

Weitere Informationen

The effects of climate change and urbanisation, such as more intense rainfall and changing land use patterns, are putting increasing pressure on urban drainage systems. This study proposes a comprehensive methodology for evaluating the effectiveness of sustainable urban drainage systems (SUDSs) in mitigating flooding and managing stormwater in both current and future scenarios. The approach integrates geospatial data, including digital elevation models (DEMs) and land use information, to delineate catchments and characterise hydrological parameters. Historical rainfall records and hydrological modelling were employed to define two baseline storm events: an extreme storm involving 422 mm of rainfall over 2 h, and an average storm involving 2.84 mm of rainfall over 1 h and 18 min. Future scenarios were developed by updating these baseline events using annual rates of change in maximum and average precipitation derived from climate projections between 2025 and 2100. The analysis incorporates seven CMIP6 climate scenarios: SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP4-2.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. A stochastic simulation of 1000 storms per year was carried out using a custom-built conceptual hydrological model based on CN and developed in Python, which reflects interannual variability. The results show that extreme storm volumes could increase by up to seven times and average storm volumes by up to two and a half times. Additionally, discharge peaks could exceed baseline values by up to 20% in some years, suggesting an increased occurrence of extreme runoff events. The methodology assesses SUDS performance by comparing runoff and hydrological responses between baseline and future estimates. This framework enables vulnerabilities and adaptation needs to be identified, ensuring the long-term effectiveness of SUDSs in managing urban flood risk. Addressing uncertainties in climate and land use projections emphasises the importance of integrating SUDS assessments into wider urban resilience strategies. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)