Treffer: Automated Detection of Center-Pivot Irrigation Systems from Remote Sensing Imagery Using Deep Learning.

Title:
Automated Detection of Center-Pivot Irrigation Systems from Remote Sensing Imagery Using Deep Learning.
Source:
Remote Sensing; Jul2025, Vol. 17 Issue 13, p2276, 20p
Geographic Terms:
Database:
Complementary Index

Weitere Informationen

Effective detection of center-pivot irrigation systems is crucial in understanding agricultural activity and managing groundwater resources for sustainable uses, especially in semi-arid regions such as North Dakota, where irrigation primarily depends on groundwater resources. In this study, we have adopted YOLOv11 to detect the center-pivot irrigation systems using multiple remote sensing datasets, including Landsat 8, Sentinel-2, and NAIP (National Agriculture Imagery Program). We developed an ArcGIS custom tool to facilitate data preparation and large-scale model execution for YOLOv11, which was not included in the ArcGIS Pro deep learning package. YOLOv11 was compared against other popular deep learning model architectures such as U-Net, Faster R-CNN, and Mask R-CNN. YOLOv11, using Landsat 8 panchromatic data, achieved the highest detection accuracy (precision: 0.98; recall: 0.91; and F1-score: 0.94) among all tested datasets and models. Spatial autocorrelation and hotspot analysis revealed systematic prediction errors, suggesting a need to adjust training data regionally. Our research demonstrates the potential of deep learning in combination with GIS-based workflows for large-scale irrigation system analysis, adopting precision agricultural technologies for sustainable water resource management. [ABSTRACT FROM AUTHOR]

Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)