Treffer: Introducing Machine Learning in Teaching Quantum Mechanics.

Title:
Introducing Machine Learning in Teaching Quantum Mechanics.
Source:
Atoms (2218-2004); Jul2025, Vol. 13 Issue 7, p66, 24p
Database:
Complementary Index

Weitere Informationen

In this article, we describe an approach to teaching introductory quantum mechanics and machine learning techniques. This approach combines several key concepts from both fields. Specifically, it demonstrates solving the Schrödinger equation using the discrete-variable representation (DVR) technique, as well as the architecture and training of neural network models. To illustrate this approach, a Python-based Jupyter notebook is developed. This notebook can be used for self-learning or for learning with an instructor. Furthermore, it can serve as a toolbox for demonstrating individual concepts in quantum mechanics and machine learning and for conducting small research projects in these areas. [ABSTRACT FROM AUTHOR]

Copyright of Atoms (2218-2004) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)