Treffer: An Adaptive Mutation-Aware Test Case Ordering Framework Using Deep Learning and Quantum-Behaved Multi-Objective PSO.
Weitere Informationen
In regression testing, rapidly identifying defects is crucial for maintaining software quality amid frequent code changes. Traditional test case ordering methods, despite extensive research, often overlook the subtle but important relationship between test executions and mutations introduced during code modifications. This paper presents an adaptive mutation-aware test case ordering framework that integrates predictive modeling with swarm-based multiobjective optimization to address this gap. The approach begins by transforming test cases into enriched feature vectors, incorporating mutation coverage, historical performance, execution cost, and statement-level weighting. A supervised deep learning model is employed to predict the likelihood of each test case uncovering seeded defects. These predictions are subsequently fed into a Quantum-Behaved Particle Swarm Optimization (QPSO) engine, which generates an optimal execution sequence by jointly optimizing fault detection, execution cost, reuse potential, and coverage diversity. The proposed framework is demonstrated using a simple Java program and rigorously validated on real-world projects from the De-fects4J benchmark. Experimental results consistently show improvements in APFD, mutation scores, and execution efficiency, confirming the feasibility and scalability of the proposed system. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Intelligent Systems & Internet of Things is the property of American Scientific Publishing Group and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)