Treffer: Large language model guided automated reaction pathway exploration.
Weitere Informationen
Fast and efficient automated exploration of reaction pathways is essential for studying reaction mechanisms and advancing data-driven approaches for reaction development and catalyst design. Here, we present a new program (utilizing Python and Fortran), capable of conducting automated, fast, and efficient exploration of reaction pathways for potential energy surfaces (PES) studies. This program integrates quantum mechanics and rule-based methodologies, underpinned by a Large Language Model-assisted chemical logic. Both active-learning methods in transition states sampling and parallel multi-step reaction searches with efficient filtering help enhance efficiency and accelerate PES searching. Its effectiveness and versatility in automating searches are exemplified through case studies of multi-step reactions, including the organic cycloaddition reaction, asymmetric Mannich-type reaction, and organometallic Pt-catalyzed reaction. ARplorer's capability to scale up for high-throughput screening significantly enhances its utility, positioning it as an efficient tool for data-driven reaction development and catalyst design. Automated exploration of reaction pathways is crucial for advancing reaction mechanisms and catalyst design. Here, the authors introduce ARplorer, a Python and Fortran-based program that integrates quantum mechanics and rule-based methods, underpinned by a large language model-assisted chemical logic, enhancing efficiency in automating searches of multi-step reactions. [ABSTRACT FROM AUTHOR]
Copyright of Communications Chemistry is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)