Treffer: Dynamic Monitoring and Evaluation of Fracture Stimulation Volume Based on Machine Learning.
Weitere Informationen
Traditional hydraulic-fracturing models are restricted by low computational efficiency, insufficient field data, and complex physical mechanisms, causing evaluation delays and failing to meet practical engineering needs. To address these challenges, this study innovatively develops a dynamic hydraulic-fracturing monitoring method that integrates machine learning with numerical simulation. Firstly, this study uses GOHFER 9.5.6 software to generate 12,000 sets of fracture geometry data and constructs a big dataset for hydraulic fracturing. In order to improve the efficiency of the simulation, a macro command is used in combination with a Python 3.11 code to achieve the automation of the simulation process, thereby expanding the data samples for the surrogate model. On this basis, a parameter sensitivity analysis is carried out to identify key input parameters, such as reservoir parameters and fracturing fluid properties, that significantly affect fracture geometry. Next, a neural-network surrogate model is established, which takes fracturing geological parameters and pumping parameters as inputs and fracture geometric parameters as outputs. Data are preprocessed using the min–max normalization method. A neural-network structure with two hidden layers is chosen, and the model is trained with the Adam optimizer to improve its predictive accuracy. The experimental results show that the efficiency of automated numerical simulation for hydraulic fracturing is significantly improved. The surrogate model achieved a prediction accuracy of over 90% and a response time of less than 10 s, representing a substantial efficiency improvement compared to traditional fracturing models. Through these technical approaches, this study not only enhances the effectiveness of fracturing but also provides a new, efficient, and accurate solution for oilfield fracturing operations. [ABSTRACT FROM AUTHOR]
Copyright of Processes is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)