Treffer: Enhancing text generation in joint Nlg/Nlu learning through curriculum learning, semi-supervised training, and advanced optimization techniques.

Title:
Enhancing text generation in joint Nlg/Nlu learning through curriculum learning, semi-supervised training, and advanced optimization techniques.
Source:
Multimedia Tools & Applications; Sep2025, Vol. 84 Issue 30, p37377-37400, 24p
Database:
Complementary Index

Weitere Informationen

Text generation is the automated process of producing written or spoken language using computational methods. It involves generating coherent and contextually relevant text based on predefined rules or learned patterns. However, challenges in text generation arise from maintaining coherence, ensuring diversity and creativity, and avoiding biases or inappropriate content. This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning. The data is prepared by gathering and pre-processing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal. Feature extraction techniques such as POS tagging, Bag of words, and Term Frequency-Inverse Document Frequency (TF-IDF) are applied. Transformer-based encoders and decoders, capturing long-range dependencies and improving source-target sequence modelling. Pre-trained language models like Optimized BERT are incorporated, along with a Hybrid Redfox Artificial Hummingbird Algorithm (HRAHA). Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations like straight-through Gumbel SoftMax estimator are employed to fine-tune the models and handle complex linguistic tasks effectively. The proposed model is implemented using Python. [ABSTRACT FROM AUTHOR]

Copyright of Multimedia Tools & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)