Treffer: Optimisation of Sensor and Sensor Node Positions for Shape Sensing with a Wireless Sensor Network—A Case Study Using the Modal Method and a Physics-Informed Neural Network.

Title:
Optimisation of Sensor and Sensor Node Positions for Shape Sensing with a Wireless Sensor Network—A Case Study Using the Modal Method and a Physics-Informed Neural Network.
Source:
Sensors (14248220); Sep2025, Vol. 25 Issue 17, p5573, 29p
Database:
Complementary Index

Weitere Informationen

Data of operational conditions of structural components, acquired, e.g., in structural health monitoring (SHM), is of great interest to optimise products from one generation to the next, for example, by adapting them to occurring operational loads. To acquire data for this purpose in the desired quality, an optimal sensor placement for so-called shape and load sensing is required. In the case of large-scale structural components, wireless sensor networks (WSN) could be used to process and transmit the acquired data for real-time monitoring, which furthermore requires an optimisation of sensor node positions. Since most publications focus only on the optimal sensor placement or the optimisation of sensor node positions, a methodology for both is implemented in a Python tool, and an optimised WSN is realised on a demonstration part, loaded at a test bench. For this purpose, the modal method is applied for shape sensing as well as a physics-informed neural network for solving inverse problems in shape sensing (iPINN). The WSN is realised with strain gauges, HX711 analogue-digital (A/D) converters, and Arduino Nano 33 IoT microprocessors for data submission to a server, which allows real-time visualisation and data processing on a Python Flask server. The results demonstrate the applicability of the presented methodology and its implementation in the Python tool for achieving high-accuracy shape sensing with WSNs. [ABSTRACT FROM AUTHOR]

Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)