Treffer: Development and Implementation of a Pilot Intent Recognition Model Based on Operational Sequences.

Title:
Development and Implementation of a Pilot Intent Recognition Model Based on Operational Sequences.
Source:
Aerospace (MDPI Publishing); Sep2025, Vol. 12 Issue 9, p780, 19p
Database:
Complementary Index

Weitere Informationen

With the advancement of intelligent human–computer interaction (IHCI) technology, the accurate recognition of an operator's intent has become essential for improving the collaborative efficiency in complex tasks. To address the challenges posed by stringent safety requirements and limited data availability in pilot intent recognition within the aviation domain, this paper presents a human intent recognition model based on operational sequence comparison. The model is built based on standard operational sequences and employs multi-dimensional scoring metrics, including operation matching degree, sequence matching degree, and coverage rate, to enable real-time dynamic analysis and intent recognition of flight operations. To evaluate the effectiveness of the model, an experimental platform was developed using Python 3.8 (64-bit) to simulate 46 key buttons in a flight cockpit. Additionally, five categories of typical flight tasks along with three operational test conditions were designed. Data were collected from 10 participants with flight simulation experience to assess the model's performance in terms of recognition accuracy and robustness under various operational scenarios, including segmented operations, abnormal operations, and special sequence operations. The experimental results demonstrated that both the linear weighting model and the feature hierarchical recognition model enabled all three feature scoring metrics to achieve high intent recognition accuracy. This approach effectively overcomes the limitations of traditional methods in capturing complex temporal relationships while also addressing the challenge of limited availability of annotated data. This paper proposes a novel technical approach for intelligent human–computer interaction systems within the aviation domain, demonstrating substantial theoretical significance and promising application potential. [ABSTRACT FROM AUTHOR]

Copyright of Aerospace (MDPI Publishing) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)