Treffer: Fuzzy Control with Modified Fireworks Algorithm for Fuel Cell Commercial Vehicle Seat Suspension.

Title:
Fuzzy Control with Modified Fireworks Algorithm for Fuel Cell Commercial Vehicle Seat Suspension.
Source:
World Electric Vehicle Journal; Oct2025, Vol. 16 Issue 10, p585, 22p
Reviews & Products:
Database:
Complementary Index

Weitere Informationen

Enhancing ride comfort and vibration control performance is a critical requirement for fuel cell commercial vehicles (FCCVs). This study develops a semi-active seat suspension control strategy that integrates a fuzzy logic controller with a Modified Fireworks Algorithm (MFWA) to systematically optimize fuzzy parameters. A seven-degree-of-freedom (7-DOF) half-vehicle model, including the magnetorheological damper (MRD)-based seat suspension system, is established in MATLAB/Simulink to evaluate the methodology under both random and bump road excitations. In addition, a hardware-in-the-loop (HIL) experimental validation was conducted, confirming the real-time feasibility and effectiveness of the proposed controller. Comparative simulations are conducted against passive suspension (comprising elastic and damping elements) and conventional PID control. Results show that the proposed MFWA-FL approach significantly improves ride comfort, reducing vertical acceleration of the human body by up to 49.29% and seat suspension dynamic deflection by 12.50% under C-Class road excitation compared with the passive system. Under bump excitations, vertical acceleration is reduced by 43.03% and suspension deflection by 11.76%. These improvements effectively suppress vertical vibrations, minimize the risk of suspension bottoming, and highlight the potential of intelligent optimization-based control for enhancing FCCV reliability and passenger comfort. [ABSTRACT FROM AUTHOR]

Copyright of World Electric Vehicle Journal is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)