Treffer: Scheduling multi-configuration last-mile delivery logistics by learning from optimisation feedback and customer preferences.

Title:
Scheduling multi-configuration last-mile delivery logistics by learning from optimisation feedback and customer preferences.
Source:
International Journal of Production Research; Nov2025, Vol. 63 Issue 21, p7835-7864, 30p
Database:
Complementary Index

Weitere Informationen

Last-mile delivery (LMD) logistics employ multiple delivery process configurations (e.g. depot-micro, depot-self, and depot-home) to meet the delivery time expectations of customers on a large scale. Meanwhile, scheduling delivery visits within multi-configuration LMD logistics requires solving complex, integrated, and intractable mathematical models. This paper presents a deep neuroevolution from an optimisation feedback algorithm that enables one to solve a set of decomposed configuration-based mathematical models instead. The algorithm trains a predictive model (e.g. a deep neural network) to learn to assign customers to each configuration. Then, feedback is deduced by solving a set of decomposed prescriptive models to schedule deliveries within each configuration. A single objective is minimised considering total delivery time, earliness and tardiness of deliveries, arrival deviation, and total and maximum self-pickup time. The pre-trained predictive model is compared with a surrogate prescriptive assignment model regarding computational time and optimisation feedback. The applicability of the proposed algorithm is validated by a set of stability and scalability tests based on Amazon's LMD case study. The predictive model is found to outperform the simple assignment model in 100% of the test instances. In addition, its ability to grasp contextual attributes of multiple sides in LMD logistics and generalisation is highlighted. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Production Research is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Volltext ist im Gastzugang nicht verfügbar.