Treffer: Methodological Approach for Determining the Aerodynamic Resistance Using 3D Scanning: Application in Mine Ventilation Modeling.

Title:
Methodological Approach for Determining the Aerodynamic Resistance Using 3D Scanning: Application in Mine Ventilation Modeling.
Source:
Applied Sciences (2076-3417); Nov2025, Vol. 15 Issue 21, p11723, 27p
Database:
Complementary Index

Weitere Informationen

Featured Application: The proposed method enables the rapid determination of aerodynamic resistance in ventilation sidings of underground mine workings using laser scanning. Accurate assessment of aerodynamic resistance in mine ventilation networks is essential for ensuring operational safety and energy efficiency, yet traditional measurement approaches remain time-consuming and prone to uncertainty. This study presents a novel methodology for constructing digital ventilation models of underground mine workings using markerless LiDAR scanning combined with automated data processing. The proposed procedure includes segmentation of point clouds into sections, calculation of geometric parameters, and direct determination of resistance coefficients, which are subsequently exported to VentSim software. The approach was validated through a case study conducted in a Polish coal mine, where a 369 m ventilation siding was scanned and analyzed. The comparison between numerical simulations and in situ measurements demonstrated strong agreement, with differences not exceeding ±5% for airflow velocity, pressure drop, and total flow rate, while larger deviations were observed for cross-sectional area (+5.1%). The method is limited by potential inaccuracies in determining excavation geometry, which can lead to errors in calculating resistance coefficients, particularly at excavation intersections and at the beginning and end of scanning sections. Point cloud analysis, determination of resistance coefficients for individual sections (segments), spatial transformation, and point cloud reduction, along with integration with VentSim, are based on Python scripts. Calculation results can be easily exported to other computational programs. The proposed approach enables integration with various sensors and allows for assigning this value directly to a given section (segment of the excavation). The method can support the construction of digital twins for mines or underground tunnels. The implementation codes of the developed algorithms have also been made available for educational and scientific purposes under the Modified GNU General Public License v3 (GPLv3). [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)