Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Spectral Efficiency Beamforming Scheme for UAV MIMO Communication via Budgeted Combinatorial Multi-Armed Bandit.

Title:
Spectral Efficiency Beamforming Scheme for UAV MIMO Communication via Budgeted Combinatorial Multi-Armed Bandit.
Source:
Electronics (2079-9292); Dec2025, Vol. 14 Issue 24, p4805, 17p
Database:
Complementary Index

Weitere Informationen

Unmanned aerial vehicles (UAVs) equipped with antenna arrays can deliver high-capacity, high-throughput, and low-latency communication services. Considering a UAV-assisted mmWave multi-input and multi-output (MIMO) system, a two-stage beamforming scheme based on a budgeted combinatorial multi-armed bandit (BC-MAB) is proposed to improve the system's spectral efficiency (SE). The pre-beamformer design problem is initially formulated as a BC-MAB problem. In this framework, the reward is the received energy, while the cost corresponds to the energy consumed by each RF chain and the budget is represented by the residual energy of the UAV. To achieve a favorable trade-off between the number of communication slots and the energy acquired per slot, a pre-beamforming scheme based on the bang-per-buck ratio is introduced to optimize the number of activated RF chains, therefore maximizing the cumulative reward. The second stage utilizes the reduced-dimensional instantaneous channel state information to design and optimize the beamformer to achieve maximum system SE. The proposed scheme achieves more than 7.1% improvement in SE compared to the benchmark schemes. Simulations validate the superiority of the proposed scheme. [ABSTRACT FROM AUTHOR]

Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)