Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Snake terrestrial locomotion synthesis in 3D virtual environments.

Title:
Snake terrestrial locomotion synthesis in 3D virtual environments.
Source:
Visual Computer; Aug2006, Vol. 22 Issue 8, p562-576, 15p
Database:
Complementary Index

Weitere Informationen

Abstract  We present a method for a 3D snake model construction and terrestrial snake locomotion synthesis in 3D virtual environments using image sequences. The snake skeleton is extracted and partitioned into equal segments using a new iterative algorithm for solving the equipartition problem. This method is applied to 3D model construction and at the motion analysis stage. Concerning the snake motion, the snake orientation is controlled by a path planning method. An animation synthesis algorithm, based on a physical motion model and tracking data from image sequences, describes the snake’s velocity and skeleton shape transitions. Moreover, the proposed motion planning algorithm allows a large number of skeleton shapes, providing a general method for aperiodic motion sequences synthesis in any motion graph. Finally, the snake locomotion is adapted to the 3D local ground, while its behavior can be easily controlled by the model parameters yielding the appropriate realistic animations. [ABSTRACT FROM AUTHOR]

Copyright of Visual Computer is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)