Treffer: Combining Background Knowledge and Learned Topics.
Weitere Informationen
Statistical topic models provide a general data-driven framework for automated discovery of high-level knowledge from large collections of text documents. Although topic models can potentially discover a broad range of themes in a data set, the interpretability of the learned topics is not always ideal. Human-defined concepts, however, tend to be semantically richer due to careful selection of words that define the concepts, but they may not span the themes in a data set exhaustively. In this study, we review a new probabilistic framework for combining a hierarchy of human-defined semantic concepts with a statistical topic model to seek the best of both worlds. Results indicate that this combination leads to systematic improvements in generalization performance as well as enabling new techniques for inferring and visualizing the content of a document. [ABSTRACT FROM AUTHOR]
Copyright of Topics in Cognitive Science is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)