Treffer: SWAPPING THE NESTED FIXED POINT ALGORITHM: A CLASS OF ESTIMATORS FOR DISCRETE MARKOV DECISION MODELS.
Weitere Informationen
This paper proposes a new nested algorithm (NPL) for the estimation of. class of discrete Markov decision models and studies its statistical and computational properties. Our method is based on a representation of the solution of the dynamic programming problem in the space of conditional choice probabilities. When the NPL algorithm is initialized with consistent nonparametric estimates of conditional choice probabilities, successive iterations return a sequence of estimators of the structural parameters which we call K-stage policy iteration estimators. We show that the sequence includes as extreme cases a Hotz-Miller estimator (for K = 1) and Rust's nested fixed point estimator (in the limit when K → ∞). Furthermore, the asymptotic distribution of all the estimators in the sequence is the same and equal to that of the maximum likelihood estimator. We illustrate the performance of our method with several examples based on Rust's bus replacement model. Monte Carlo experiments reveal a trade-off between finite sample precision and computational cost in the sequence of policy iteration estimators. [ABSTRACT FROM AUTHOR]
Copyright of Econometrica is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)