Treffer: General Spectral Theory of Nonlinear Systems.
Weitere Informationen
The spectral theory of linear (time-invariant) systems is, of course, the most important aspect of control theory in classical feedback design, and historically this was the approach taken by control engineers until the introduction of state-space theory. The techniques developed in the past include Nyquist and Bode diagrams, pole assignment and root locus methods. Frequency domain methods are therefore extremely important, especially for the suppression of resonant vibrations in mechanical systems. In this chapter we shall outline a general spectral theory for nonlinear systems. First, a generalised transform theory is developed which can generate Volterra series kernels directly using Schwartz΄ kernel theorem, without the need of a (somewhat arbitrary) definition of multi-dimensional Laplace transforms. This theory can then be directly applied, by using the iteration scheme developed in this book to derive a general spectral theory for nonlinear systems. We shall then briefly show how to apply the same ideas to generalise exponential dichotomies and the Sacker-Sell spectrum to nonlinear systems. We shall assume a basic knowledge of functional analysis and distribution theory. [ABSTRACT FROM AUTHOR]
Copyright of Linear, Time-varying Approximations to Nonlinear Dynamical Systems is the property of Springer Nature / Books and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)