Treffer: Efficient Dynamic Derived Field Generation on Many-Core Architectures Using Python.

Title:
Efficient Dynamic Derived Field Generation on Many-Core Architectures Using Python.
Source:
2012 SC Companion: High Performance Computing, Networking Storage & Analysis; 2012, p583-592, 10p
Database:
Complementary Index

Weitere Informationen

Derived field generation is a critical aspect of many visualization and analysis systems. This capability is frequently implemented by providing users with a language to create new fields and then translating their "programs" into a pipeline of filters that are combined in sequential fashion. Although this design is highly extensible and practical for development, the runtime characteristics of the typical implementation are poor, since it iterates over large arrays many times. As we reconsider visualization and analysis systems for many-core architectures, we must re-think the best way to implement derived fields while being cognizant of data movement. In this paper, we describe a flexible Python-based framework that realizes efficient derived field generation on many-core architectures using OpenCL. Our framework supports the development of different execution strategies for composing operations using a common library of building blocks. We present an evaluation of our framework by testing three execution strategies to explore tradeoffs between runtime performance and memory constraints. We successfully demonstrate our framework in an HPC environment using the vortex detection application on a large-scale simulation. [ABSTRACT FROM PUBLISHER]

Copyright of 2012 SC Companion: High Performance Computing, Networking Storage & Analysis is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)