Treffer: On recent results of ergodic property for p-adic dynamical systems.

Title:
On recent results of ergodic property for p-adic dynamical systems.
Source:
P-Adic Numbers, Ultrametric Analysis & Applications; Jul2014, Vol. 6 Issue 3, p235-257, 23p
Database:
Complementary Index

Weitere Informationen

Theory of dynamical systems in fields of p-adic numbers is an important part of algebraic and arithmetic dynamics. The study of p-adic dynamical systems is motivated by their applications in various areas of mathematics, physics, genetics, biology, cognitive science, neurophysiology, computer science, cryptology, etc. In particular, p-adic dynamical systems found applications in cryptography, which stimulated the interest to nonsmooth dynamical maps. An important class of (in general) nonsmooth maps is given by 1-Lipschitz functions. In this paper we present a recent summary of results about the class of 1-Lipschitz functions and describe measure-preserving (for the Haar measure on the ring of p-adic integers) and ergodic functions. The main mathematical tool used in this work is the representation of the function by the van der Put series which is actively used in p-adic analysis. The van der Put basis differs fundamentally from previously used ones (for example, the monomial and Mahler basis) which are related to the algebraic structure of p-adic fields. The basic point in the construction of van der Put basis is the continuity of the characteristic function of a p-adic ball. Also we use an algebraic structure (permutations) induced by coordinate functions with partially frozen variables. [ABSTRACT FROM AUTHOR]

Copyright of P-Adic Numbers, Ultrametric Analysis & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)