Ahmed, W., Zaman, S., Asif, E., Ali, K., Mahmoud, E. E., & Asheboss, M. A. (2024). Exploring the role of topological descriptors to predict physicochemical properties of anti-HIV drugs by using supervised machine learning algorithms. BMC Chemistry, 18(1), 1-22. https://doi.org/10.1186/s13065-024-01266-4
ISO-690 (author-date, English)AHMED, Wakeel, ZAMAN, Shahid, ASIF, Eizzah, ALI, Kashif, MAHMOUD, Emad E. und ASHEBOSS, Mamo Abebe, 2024. Exploring the role of topological descriptors to predict physicochemical properties of anti-HIV drugs by using supervised machine learning algorithms. BMC Chemistry. 12 September 2024. Vol. 18, no. 1, p. 1-22. DOI 10.1186/s13065-024-01266-4.
Modern Language Association 9th editionAhmed, W., S. Zaman, E. Asif, K. Ali, E. E. Mahmoud, und M. A. Asheboss. „Exploring the Role of Topological Descriptors to Predict Physicochemical Properties of Anti-HIV Drugs by Using Supervised Machine Learning Algorithms.“. BMC Chemistry, Bd. 18, Nr. 1, September 2024, S. 1-22, https://doi.org/10.1186/s13065-024-01266-4.
Mohr Siebeck - Recht (Deutsch - Österreich)Ahmed, Wakeel/Zaman, Shahid/Asif, Eizzah/Ali, Kashif/Mahmoud, Emad E./Asheboss, Mamo Abebe: Exploring the role of topological descriptors to predict physicochemical properties of anti-HIV drugs by using supervised machine learning algorithms., BMC Chemistry 2024, 1-22.
Emerald - HarvardAhmed, W., Zaman, S., Asif, E., Ali, K., Mahmoud, E.E. und Asheboss, M.A. (2024), „Exploring the role of topological descriptors to predict physicochemical properties of anti-HIV drugs by using supervised machine learning algorithms.“, BMC Chemistry, Vol. 18 No. 1, S. 1-22.