Gao, P., Song, Y., Wang, J., Yang, Z., Wang, K., & Yuan, Y. (2024). Prediction Model for the Chloride Ion Permeability Resistance of Recycled Aggregate Concrete Based on Machine Learning. Buildings (2075-5309), 14(11), 3608-3626. https://doi.org/10.3390/buildings14113608
ISO-690 (author-date, English)GAO, Pengfei, SONG, Yuanyuan, WANG, Jian, YANG, Zhiyong, WANG, Kai und YUAN, Yongyu, 2024. Prediction Model for the Chloride Ion Permeability Resistance of Recycled Aggregate Concrete Based on Machine Learning. Buildings (2075-5309). 1 November 2024. Vol. 14, no. 11, p. 3608-3626. DOI 10.3390/buildings14113608.
Modern Language Association 9th editionGao, P., Y. Song, J. Wang, Z. Yang, K. Wang, und Y. Yuan. „Prediction Model for the Chloride Ion Permeability Resistance of Recycled Aggregate Concrete Based on Machine Learning.“. Buildings (2075-5309), Bd. 14, Nr. 11, November 2024, S. 3608-26, https://doi.org/10.3390/buildings14113608.
Mohr Siebeck - Recht (Deutsch - Österreich)Gao, Pengfei/Song, Yuanyuan/Wang, Jian/Yang, Zhiyong/Wang, Kai/Yuan, Yongyu: Prediction Model for the Chloride Ion Permeability Resistance of Recycled Aggregate Concrete Based on Machine Learning., Buildings (2075-5309) 2024, 3608-3626.
Emerald - HarvardGao, P., Song, Y., Wang, J., Yang, Z., Wang, K. und Yuan, Y. (2024), „Prediction Model for the Chloride Ion Permeability Resistance of Recycled Aggregate Concrete Based on Machine Learning.“, Buildings (2075-5309), Vol. 14 No. 11, S. 3608-3626.