American Psychological Association 6th edition

Kurz, S. (2025). Capacity of an infinite family of networks related to the diamond network for fixed alphabet sizes: Capacity of an infinite family of networks: S. Kurz. Designs, Codes & Cryptography, 93(2), 409-421. https://doi.org/10.1007/s10623-024-01485-9

ISO-690 (author-date, English)

KURZ, Sascha, 2025. Capacity of an infinite family of networks related to the diamond network for fixed alphabet sizes: Capacity of an infinite family of networks: S. Kurz. Designs, Codes & Cryptography. 1 Februar 2025. Vol. 93, no. 2, p. 409-421. DOI 10.1007/s10623-024-01485-9.

Modern Language Association 9th edition

Kurz, S. „Capacity of an Infinite Family of Networks Related to the Diamond Network for Fixed Alphabet Sizes: Capacity of an Infinite Family of Networks: S. Kurz.“. Designs, Codes & Cryptography, Bd. 93, Nr. 2, Februar 2025, S. 409-21, https://doi.org/10.1007/s10623-024-01485-9.

Mohr Siebeck - Recht (Deutsch - Österreich)

Kurz, Sascha: Capacity of an infinite family of networks related to the diamond network for fixed alphabet sizes: Capacity of an infinite family of networks: S. Kurz., Designs, Codes & Cryptography 2025, 409-421.

Emerald - Harvard

Kurz, S. (2025), „Capacity of an infinite family of networks related to the diamond network for fixed alphabet sizes: Capacity of an infinite family of networks: S. Kurz.“, Designs, Codes & Cryptography, Vol. 93 No. 2, S. 409-421.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.