American Psychological Association 6th edition

Martin, G. L., Lee, S.-M., Kim, J.-H., Jeong, Y.-S., Kang, A. R., & Woo, J. (2025). Deep Defense Against Mal-Doc: Utilizing Transformer and Seq GAN for Detecting and Classifying Document Type Malware. Applied Sciences (2076-3417), 15(6), 2978-3000. https://doi.org/10.3390/app15062978

ISO-690 (author-date, English)

MARTIN, Gati Lother, LEE, Sang-Min, KIM, Jong-Hyun, JEONG, Young-Seob, KANG, Ah Reum und WOO, Jiyoung, 2025. Deep Defense Against Mal-Doc: Utilizing Transformer and Seq GAN for Detecting and Classifying Document Type Malware. Applied Sciences (2076-3417). 15 März 2025. Vol. 15, no. 6, p. 2978-3000. DOI 10.3390/app15062978.

Modern Language Association 9th edition

Martin, G. L., S.-M. Lee, J.-H. Kim, Y.-S. Jeong, A. R. Kang, und J. Woo. „Deep Defense Against Mal-Doc: Utilizing Transformer and Seq GAN for Detecting and Classifying Document Type Malware.“. Applied Sciences (2076-3417), Bd. 15, Nr. 6, März 2025, S. 2978-00, https://doi.org/10.3390/app15062978.

Mohr Siebeck - Recht (Deutsch - Österreich)

Martin, Gati Lother/Lee, Sang-Min/Kim, Jong-Hyun/Jeong, Young-Seob/Kang, Ah Reum/Woo, Jiyoung: Deep Defense Against Mal-Doc: Utilizing Transformer and Seq GAN for Detecting and Classifying Document Type Malware., Applied Sciences (2076-3417) 2025, 2978-3000.

Emerald - Harvard

Martin, G.L., Lee, S.-M., Kim, J.-H., Jeong, Y.-S., Kang, A.R. und Woo, J. (2025), „Deep Defense Against Mal-Doc: Utilizing Transformer and Seq GAN for Detecting and Classifying Document Type Malware.“, Applied Sciences (2076-3417), Vol. 15 No. 6, S. 2978-3000.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.