Bhaskar, T., Sathish, K., Salomi Victoria, D. R., Er. Tatiraju., Kanth, V. R., Patil, U., Mukkapati, N., Angadi, S., Karthikeyan, P., & Vidhya, R. G. (2025). Hybrid deep learning framework for enhanced target tracking in video surveillance using CNN and DRNN-GWO. International Journal of Basic & Applied Science, 14(1), 208-215. https://doi.org/10.14419/wddeck70
ISO-690 (author-date, English)BHASKAR, Thupakula, SATHISH, K., SALOMI VICTORIA, D. Rosy, ER. TATIRAJU., KANTH, V. Rajani, PATIL, Uma, MUKKAPATI, Naveen, ANGADI, Sanjeevkumar, KARTHIKEYAN, P. und VIDHYA, R. G., 2025. Hybrid deep learning framework for enhanced target tracking in video surveillance using CNN and DRNN-GWO. International Journal of Basic & Applied Science. 1 Januar 2025. Vol. 14, no. 1, p. 208-215. DOI 10.14419/wddeck70.
Modern Language Association 9th editionBhaskar, T., K. Sathish, D. R. Salomi Victoria, Er. Tatiraju., V. R. Kanth, U. Patil, N. Mukkapati, S. Angadi, P. Karthikeyan, und R. G. Vidhya. „Hybrid Deep Learning Framework for Enhanced Target Tracking in Video Surveillance Using CNN and DRNN-GWO.“. International Journal of Basic & Applied Science, Bd. 14, Nr. 1, Januar 2025, S. 208-15, https://doi.org/10.14419/wddeck70.
Mohr Siebeck - Recht (Deutsch - Österreich)Bhaskar, Thupakula/Sathish, K./Salomi Victoria, D. Rosy/Er. Tatiraju./Kanth, V. Rajani/Patil, Uma u. a.: Hybrid deep learning framework for enhanced target tracking in video surveillance using CNN and DRNN-GWO., International Journal of Basic & Applied Science 2025, 208-215.
Emerald - HarvardBhaskar, T., Sathish, K., Salomi Victoria, D.R., Er. Tatiraju., Kanth, V.R., Patil, U., Mukkapati, N., Angadi, S., Karthikeyan, P. und Vidhya, R.G. (2025), „Hybrid deep learning framework for enhanced target tracking in video surveillance using CNN and DRNN-GWO.“, International Journal of Basic & Applied Science, Vol. 14 No. 1, S. 208-215.