Alizadeh, M., Jameii, S. M., & Reza, A. (2025). An improved NSGA-II algorithm based on fuzzy logic and learning automata for automatically designing the convolutional neural network for image classification. Multimedia Tools & Applications, 84(35), 44543-44582. https://doi.org/10.1007/s11042-025-20912-0
ISO-690 (author-date, English)ALIZADEH, Mahhya, JAMEII, Seyed Mahdi und REZA, Akram, 2025. An improved NSGA-II algorithm based on fuzzy logic and learning automata for automatically designing the convolutional neural network for image classification. Multimedia Tools & Applications. 28 Oktober 2025. Vol. 84, no. 35, p. 44543-44582. DOI 10.1007/s11042-025-20912-0.
Modern Language Association 9th editionAlizadeh, M., S. M. Jameii, und A. Reza. „An Improved NSGA-II Algorithm Based on Fuzzy Logic and Learning Automata for Automatically Designing the Convolutional Neural Network for Image Classification.“. Multimedia Tools & Applications, Bd. 84, Nr. 35, Oktober 2025, S. 44543-82, https://doi.org/10.1007/s11042-025-20912-0.
Mohr Siebeck - Recht (Deutsch - Österreich)Alizadeh, Mahhya/Jameii, Seyed Mahdi/Reza, Akram: An improved NSGA-II algorithm based on fuzzy logic and learning automata for automatically designing the convolutional neural network for image classification., Multimedia Tools & Applications 2025, 44543-44582.
Emerald - HarvardAlizadeh, M., Jameii, S.M. und Reza, A. (2025), „An improved NSGA-II algorithm based on fuzzy logic and learning automata for automatically designing the convolutional neural network for image classification.“, Multimedia Tools & Applications, Vol. 84 No. 35, S. 44543-44582.