Result: A conjecture in combinatorial number theory
Title:
A conjecture in combinatorial number theory
Authors:
Publisher Information:
Yangzhou University, Yangzhou
Subject Terms:
Document Type:
Academic journal
Article
File Description:
application/xml
Access URL:
Accession Number:
edsair.c2b0b933574d..32202d1701f123c6f40b3c4be6ab1738
Database:
OpenAIRE
Further Information
The authors study the following conjecture proposed by \textit{N. Alon, S. Friedland} and \textit{G. Kalai} [J. Comb. Theory, Ser. B 37, 79--91 (1984; Zbl 0527.05059)]: Given \(m\) \(k\)-dimensional integer vectors \(a_i:= (a_{i1},\cdots,a_{ik})\), where \(i=1,2,\dots,m\), there must be a subset \(I\) of the set \(\{1,2,\dots,m\}\) such that \(\sum_{i\in I} a_i \equiv 0\bmod n\), provided that \(n