Result: On some integrals appearing in the theory of semiconductors

Title:
On some integrals appearing in the theory of semiconductors
Publisher Information:
Omsk State University (OmskiÄ­ GosudarstvennyÄ­ Universitet), Faculty of Computer Science (Fakul'tet Komp'yuternykh Nauk), Omsk
Document Type:
Academic journal Article
File Description:
application/xml
Accession Number:
edsair.c2b0b933574d..d5c90ba8311cab6c634bbdba70770108
Database:
OpenAIRE

Further Information

Using the confluent hypergeometric functions, the author proposes a numerical method for evaluating the integrals \[ A_n(p,x)=\frac{x^n}{\Gamma (p+1)}\int_{0}^{\infty} e^{-t}t^p (t^n+x^n)^{-1} dt \] and \[ B_n(p,x)=\frac{x^{2n}}{\Gamma (p+1)}\int_{0}^{\infty} e^{-t}t^p (t^n+x^n)^{-2} dt \] for \(p>-1\), \(x>0\), and \(n=1,2,\dots\) .