Treffer: Symmetric functions and the Riemann zeta series
Title:
Symmetric functions and the Riemann zeta series
Authors:
Publisher Information:
Springer India, New Delhi, Delhi, India; Indian National Science Academy, New Delhi, Delhi, India, 2000.
Publication Year:
2000
Subject Terms:
Symmetric functions and generalizations, Binomial coefficients, factorials, \(q\)-identities, \(\zeta (s)\) and \(L(s, \chi)\), Riemann zeta series, Exact enumeration problems, generating functions, symmetric functions, Bernoulli and Euler numbers and polynomials, RIEMANN ZETA FUNCTION, Factorials, binomial coefficients, combinatorial functions, trigonometric function, Bernoulli numbers
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Accession Number:
edsair.dedup.wf.002..651bdb041d3a535e1ea433f2c5e49d65
Database:
OpenAIRE
Weitere Informationen
The author derives some infinite series identities. We mention two examples which are consequences the author has given: \[ \sum_{n=1}^{\infty}{1+1/2^2+1/3^2+\cdots+1/n^2\over n^2}={7\over 4}\zeta(4) \tag{1} \] and \[ \sum_{n=1}^{\infty}{1+1/2^4+1/3^4+\cdots+1/n^4\over n^4}={13\over 12}\zeta(8).\tag{2.} \]