Treffer: A method of multiobjective decision making using a vector value function
Title:
A method of multiobjective decision making using a vector value function
Source:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Qüestiió: quaderns d'estadística i investigació operativa; 1994: Vol.: 18 Núm.: 2
Universitat Politècnica de Catalunya (UPC)
Qüestiió: quaderns d'estadística i investigació operativa; 1994: Vol.: 18 Núm.: 2
Publisher Information:
Institut d'Estadística de Catalunya, 1994.
Publication Year:
1994
Subject Terms:
Classificació AMS::90 Operations research, Vector value function, Partial information on preferences, mathematical programming::90C Mathematical programming, Mathematical programming, 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Operations research, Investigació operativa, Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, Classificació AMS::90 Operations research, mathematical programming::90B Operations research and management science, mathematical programming::90B Operations research and management science, Multiobjective decision making, 90 Operations research, mathematical programming::90B Operations research and management science [Classificació AMS], Programació (Matemàtica), Efficient set
Document Type:
Fachzeitschrift
Article
File Description:
application/pdf
Language:
English
Access URL:
Rights:
CC BY NC ND
Accession Number:
edsair.dedup.wf.002..77adfe298f8f9e6b9fe49e7e3cb8bad4
Database:
OpenAIRE
Weitere Informationen
A decision situation with partial information on preferences by means of a vector value function is assumed. The concept of minimum value dispersion solution as a reference point joined with a pseudodistance function from such a point and a dispersion level ε, lead to the notion of ε-dispersion set. The dispersion level represents the amount of value that the decision maker can be indifferent to, therefore he should choose his most preferred solution in this set. Convergence properties, as well as an interactive method based on the reduction of ε-sets by means of parametric variation of ε, to aid decision making in discrete problems is considered. Detailed numerical examples are included.