Result: Weighted games without a unique minimal representation in integers

Title:
Weighted games without a unique minimal representation in integers
Contributors:
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs, Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
Source:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publisher Information:
2009.
Publication Year:
2009
Document Type:
Report Report
File Description:
application/pdf
Language:
English
Accession Number:
edsair.dedup.wf.002..95ea57bd7f1e5f0bbfb0930d7638ac2c
Database:
OpenAIRE

Further Information

Isbell in 1959 was the first to find a weighted game without a minimum integer realization in which the affected players do not play a symmetric role in the game. His example has 12 players is a weighted decisive game, i.e. a weighted game for which a coalition wins iff its complement loses. The goal of this paper is to provide a procedure for weighted games that allows finding out what is the minimum number of players needed to get a weighted game without a minimum integer weighted representation in which the affected players do not play a symmetric role in the game. We prove, by means of an algorithm, that the minimum number of voters required is 9.
Recerca de jocs amb mínim número de jugadors sense representacions enteres mínimes o mínimes normalitzades