Treffer: A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies

Title:
A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies
Contributors:
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya. MSR - Mecànica del Sòls i de les Roques, Universitat Politècnica de Catalunya. SOCO - Soft Computing
Source:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publisher Information:
2005.
Publication Year:
2005
Document Type:
Report Report
File Description:
application/postscript
Language:
English
Accession Number:
edsair.dedup.wf.002..c4c00a18bfb00a3ca5a9c2ce2b5cc90c
Database:
OpenAIRE

Weitere Informationen

An algorithm for sequential approximation with optimal coefficients and interacting frequencies (SAOCIF) for feed-forward neural networks is presented. SAOCIF combines two key ideas. The first one is the optimization of the coefficients (the linear part of the approximation). The second one is the strategy to choose the frequencies (the non-linear weights), taking into account the interactions with the previously selected ones. The resulting method combines the locality of sequential approximations, where only one frequency is found at every step, with the globality of non-sequential methods, where every frequency interacts with the others. The idea behind SAOCIF can be theoretically extended to general Hilbert spaces. Experimental results show a very satisfactory performance.