Treffer: The integral means spectrum for lacunary series

Title:
The integral means spectrum for lacunary series
Authors:
Source:
Annales Fennici Mathematici; Vol. 26 No. 2 (2001): Volume 26, 2001; 447-453
Annales Fennici Mathematici; Vol 26 Nro 2 (2001): Volume 26, 2001; 447-453
SCOPUS1239629X-2001-26-2-SID0012036216
Publisher Information:
The Finnish Mathematical Society, 2001.
Publication Year:
2001
Document Type:
Fachzeitschrift Article
File Description:
application/pdf; application/xml
Language:
English
Rights:
CC BY
Accession Number:
edsair.dedup.wf.002..d3c5be80a57a2f05ac7df03a5e0df3a8
Database:
OpenAIRE

Weitere Informationen

Let \(f\) be a univalent function in the unit disk \(D\), and let \(\log{f'(z)} = \sum_{k=1}^\infty a_k z^{n_k}\) be a lacunary series with bounded coefficients and \(n_{k+1}/n_k \geq \lambda \geq 2\). The integral means spectrum of \(f\) is defined by \[ \beta_f(t) := \varlimsup_{r \to 1} {\frac{\log{\int_{|z|=r}|f'(re^{i\theta})|^td\theta}} {\log{\frac{1}{1-r}}}} , \quad t>0 . \] The main result of this paper is the asymptotic formula \[ \beta_f(t) = \frac{t^2}{4} \varlimsup_{r \to 1} {\frac{b^2(r)}{\log{\frac{1}{1-r}}}} + O(t^{5/2}) \quad \text{as} \quad t \to 0 , \] where \[ b^2(r) := \sum_{k=1}^\infty |a_k|r^{2n_k}. \] From this and the law of the iterated logarithm the author deduces the estimate \[ \varlimsup_{r \to 1}{\frac{|\log{f'(r\zeta)}|} {\sqrt{\log{\frac{1}{1-r}}\log{\log{\log{\frac{1}{1-r}}}}}}} \leq 2 \lim_{t \to 0}{\frac{\sqrt{\beta(t)}}{t}} \] for almost all \(\zeta\) with \(|\zeta|=1\). Equality holds if there exists \[ \lim_{r \to 1}{\frac{b^2(r)}{\log{\frac{1}{1-r}}}} . \]