Treffer: on entire functions of slow growth: On entire functions of slow growth

Title:
on entire functions of slow growth: On entire functions of slow growth
Publisher Information:
Polskie Towarzystwo Matematyczne, Warsaw, 2017.
Publication Year:
2017
Document Type:
Fachzeitschrift Article<br />Other literature type
File Description:
application/xml
DOI:
10.14708/cm.v24i1.6085
Accession Number:
edsair.dedup.wf.002..fd159e10c2d8e6191991e1c5bd61dd11
Database:
OpenAIRE

Weitere Informationen

Let \(f(z)=\sum^{\infty}_{0}a_ nz^ n\) where \(z=re^{i\theta}\) be an entire function and \(M(r)=\max_{| z| =r}| f(z)|.\) When the order of f, \(\rho =0\) i.e. the function is of slow growth, the concept of logarithmic order \(\rho^*\) (lower order \(\lambda^*)\) is defined as \[ \rho^*= \limsup_{r\to \infty}(\log \log M(r)/\log \log r), \] \[ \lambda^*=\lim \inf_{r\to \infty}(\log \log M(r)/\log \log r), \] \(1\leq \lambda^*\leq \rho^*\leq \infty\). For \(1