Treffer: Machine learning‐driven implementation of workflow optimization in cloud computing for IoT applications

Title:
Machine learning‐driven implementation of workflow optimization in cloud computing for IoT applications
Source:
Internet Technology Letters. 8
Publisher Information:
Wiley, 2024.
Publication Year:
2024
Document Type:
Fachzeitschrift Article
Language:
English
ISSN:
2476-1508
DOI:
10.1002/itl2.571
Rights:
Wiley Online Library User Agreement
Accession Number:
edsair.doi...........47bf8e28d60c99fc5039f4187e5b91a5
Database:
OpenAIRE

Weitere Informationen

The optimization of workflow scheduling in Internet of Things (IoT) environments presents significant challenges due to the dynamic and heterogeneous nature of these systems. Traditional techniques must often adapt to fluctuating network conditions and varying data loads. To address these limitations, we propose a novel approach that leverages Automated Machine Learning (AutoML) integrated with cloud computing to optimize workflow scheduling for IoT applications. Our solution automates machine learning model selection, training, and tuning, significantly enhancing computational efficiency and adaptability. Through extensive experimentation, we demonstrate that our AutoML‐driven approach surpasses conventional algorithms across several key metrics, including accuracy, computational efficiency, adaptability to dynamic environments, and communication efficiency. Specifically, our method achieves a scheduling accuracy improvement of up to 25%, a reduced computational overhead by 30%, and a 40% enhancement in adaptability under dynamic conditions. Furthermore, the scalability of our solution is critical in cloud computing contexts, enabling efficient handling of large‐scale IoT deployments by leveraging cloud resources for distributed processing. This scalability ensures that our approach can effectively manage increasing data volumes and device heterogeneity inherent in modern IoT systems.