Result: Unknown parameters estimation for multilayer modular regression using the least absolute deviations method
Further Information
Статья посвящена разработке и возможности применения в регрессионном анализе новой математической формы связи между выходной переменной и входными факторами. Для этого использованы ранее изученные более простые модели модульной линейной регрессии, в которых один или несколько входных факторов преобразуются единожды с помощью операции модуль. Предложен симбиоз линейной регрессии и модульной регрессии с мультиарной операцией модуль. На его основе сформулирована многослойная модульная регрессия, выстроенная по принципу «модуль в модуле», то есть на каждом новом слое используется модуль от величины предыдущего слоя. Задача оценивания многослойной модульной регрессии с заданным числом слоев методом наименьших модулей сведена к задаче частично-булевого линейного программирования. С помощью предложенных регрессий решена задача моделирования запасов древесины в Иркутской области. При этом построены однослойная, двухслойная и трехслойная модульные регрессии. Новые модели по качеству оказались существенно лучше линейной регрессии, причем, с увеличением количества слоев наблюдалось снижение суммы модулей остатков. В трехслойной модели все остатки получились нулевыми. Разработанный математический аппарат может успешно применяться для решения многих задач анализа данных. The article is devoted to the development and possibility of using a new mathematical form of connection between the output variable and input factors in regression analysis. For this purpose, previously studied simpler modular linear regression models were used, in which one or more input factors are transformed once using the modulus operation. A symbiosis of linear regression and modular regression with a multiary operation module is proposed. On its basis, a multilayer modular regression is formulated, built on the “module within a module” principle, that is, each new layer uses a module from the value of the previous layer. The problem of estimating multilayer modular regression with a given number of layers using the least modulus method is reduced to a partial-Boolean linear programming problem. Using the proposed regressions, the problem of modeling timber reserves in the Irkutsk region was solved. In this case, single-layer, two-layer and three-layer modular regression were constructed. The new models turned out to be significantly better in quality than linear regression, and with an increase in the number of layers, a decrease in the sum of the residual modules was observed. In the three-layer model, all residuals turned out to be zero. The developed mathematical apparatus can be successfully used to solve many data analysis problem.