Treffer: Online Accelerator Tuning with Adaptive Bayesian Optimization

Title:
Online Accelerator Tuning with Adaptive Bayesian Optimization
Publisher Information:
JACoW Publishing, Geneva, Switzerland, 2022.
Publication Year:
2022
Document Type:
Konferenz Conference object
Language:
English
DOI:
10.18429/jacow-napac2022-thxd4
Rights:
CC BY
Accession Number:
edsair.doi...........63480ad616d6022f19b67641ad13cc2a
Database:
OpenAIRE

Weitere Informationen

Particle accelerators require continuous adjustment to maintain beam quality. At the Advanced Photon Source (APS) this is accomplished using a mix of operator-controlled and automated tools. To improve the latter, we explored the use of machine learning (ML) at the APS injector complex. The core approach we chose was Bayesian optimization (BO), which is well suited for sparse data tasks. To enable long-term online use, we modified BO into adaptive Bayesian optimization (ABO) though auxiliary models of device drift, physics-informed quality and constraint weights, time-biased data subsampling, digital twin retraining, and other approaches. ABO allowed for compensation of changes in inputs and objectives without discarding previous data. Benchmarks showed better ABO performance in several simulated and experimental cases. To integrate ABO into the operational workflow, we developed a Python command line utility, pysddsoptimize, that is compatible with existing Tcl/Tk tools and the SDDS data format. This allowed for fast implementation, debugging, and benchmarking. Our results are an encouraging step for the wider adoption of ML at APS.
Proceedings of the 5th North American Particle Accelerator Conference, NAPAC2022, Albuquerque, NM, USA