Treffer: On neutrosophic multi-level multi-objective linear programming problem with application in transportation problem

Title:
On neutrosophic multi-level multi-objective linear programming problem with application in transportation problem
Authors:
Source:
Journal of Intelligent & Fuzzy Systems. 44:2251-2267
Publisher Information:
SAGE Publications, 2023.
Publication Year:
2023
Document Type:
Fachzeitschrift Article
ISSN:
1875-8967
1064-1246
DOI:
10.3233/jifs-211374
Accession Number:
edsair.doi...........9b30ac19738f52785f9affec41f895d1
Database:
OpenAIRE

Weitere Informationen

In this research, we use the harmonic mean technique to present an interactive strategy for addressing neutrosophic multi-level multi-objective linear programming (NMMLP) problems. The coefficients of the objective functions of level decision makers and constraints are represented by neutrosophic numbers. By using the interval programming technique, the NMMLP problem is transformed into two crisp MMLP problems, one of these problems is an MMLP problem with all of its coefficients being upper approximations of neutrosophic numbers, while the other is an MMLP problem with all of its coefficients being lower approximations of neutrosophic numbers. The harmonic mean method is then used to combine the many objectives of each crisp problem into a single objective. Then, a preferred solution for NMMLP problems is obtained by solving the single-objective linear programming problem. An application of our research problem is how to determine the optimality the cost of multi-objective transportation problem with neutrosophic environment. To demonstrate the proposed strategies, numerical examples are solved.

AN0161762875;flu01feb.23;2023Feb10.04:12;v2.2.500

On neutrosophic multi-level multi-objective linear programming problem with application in transportation problem 

In this research, we use the harmonic mean technique to present an interactive strategy for addressing neutrosophic multi-level multi-objective linear programming (NMMLP) problems. The coefficients of the objective functions of level decision makers and constraints are represented by neutrosophic numbers. By using the interval programming technique, the NMMLP problem is transformed into two crisp MMLP problems, one of these problems is an MMLP problem with all of its coefficients being upper approximations of neutrosophic numbers, while the other is an MMLP problem with all of its coefficients being lower approximations of neutrosophic numbers. The harmonic mean method is then used to combine the many objectives of each crisp problem into a single objective. Then, a preferred solution for NMMLP problems is obtained by solving the single-objective linear programming problem. An application of our research problem is how to determine the optimality the cost of multi-objective transportation problem with neutrosophic environment. To demonstrate the proposed strategies, numerical examples are solved.

Keywords: Neutrosophic number; multi-level linear programming; multi-objective programming; harmonic mean technique; transportation problem

1 Introduction

Multi-level programming challenges are a collection of numerous optimization problems in which the constraint area of one is determined by the results of other DMs. There have been a number of mathematical models for analogous issues [[7], [17]]. Han et al. [[12]] gave a summary of theoretical research findings and related multilevel decision-making technique developments. Liu and Yang [[11]] suggested an interactive programming approach for solving multi-level multi-objective linear programming problems that found a compromise solution. Arora and Gupta [[3]] devised a method for determining the optimal solution to the multi-level multi-objective linear fractional programming problem.

Many researchers have developed ways to tackle MOP issues and identify Pareto solutions since Chandra's early work [[23]] on the concept of multiple-objective programming (MOP) problems [[9], [13], [31]]. Sulaiman and Mustafa [[30]] proposed a harmonic mean approach for tackling MOP problems. Muruganadam and Ambika [[16]] introduced a new method based on a graded mean integration representation and a harmonic mean strategy for tackling multiple objective linear fractional programming problems. To overcome MOP difficulties, Sohag and Asadujjaman [[29]] proposed a new average approach algorithm.

By introducing indeterminacy as an independent component, the neutrosophic set accommodates inconsistency, incompleteness, and indeterminacy from a new perspective. Smarandache [[26]] proposed a new notion called neutrosophic set based on neutrosophy in 1999 to deal with inconsistent, partial, and indeterminate information when indeterminacy is an independent and significant element. The idea of neutrosophic number was also proposed, with indeterminacy as a component, and its fundamental features were explained [[27]]. In the literature, some theoretical research and application of neutrosophic numbers have been documented [[4], [10], [14], [21]]. Edalatpanah [[5]] proposes a new direct algorithm for solving neutrosophic linear programming with triangular neutrosophic numbers as variables and right-hand side. Pramanik and Dey [[20]] suggested a goal programming technique for solving multi-level linear programming problems with neutrosophic numbers. In a multi-objective linear programming problem with neutrosophic numbers, Pramanik and Banerjee [[19]] suggested a goal programming technique.

The transportation problem (TP) deals with moving a large number of units of goods from a number of sources of supply to a number of demand destinations while minimising the total transportation cost. Because of insufficient data fluctuations in the market environment, decision criteria such as supply, demand, and transportation cost are often not exact in a real-case TP [[6], [33]]. Ammar and Youness [[2]] computed the optimal cost of a multi-objective transportation problem with fuzzy numbers. Ammar and Khalifa have determined the cost optimality for multi-objective multi-item solid problems in [[1]]. TP in a neutrosophic environment is defined as a TP with neutrosophic values for cost, needs, and supplies [[18], [25], [32]].

There are seven sections to this study. The next section covers the fundamental Preliminaries. This section is broken down even further into three subsections. In subsections (2.1) and (2.2), the definitions and arithmetic operations of interval and neutrosophic numbers are discussed, and in subsection (2.3), the definitions of uncertain harmonic mean are presented. We look at a neutrosophic multi-objective multi-level linear programming (NMMLP) problem in Section 3. This section is broken down even further into four subsections: A mathematical formulation of the NMMLP problem is proposed in (3.1), the NMMLP problem is described in its crisp version in (3.2), a single objective function multi-level linear programming problem is explored in (3.3), and an interactive model for the NMMLP problem is shown in (3.4). Section 4 explains a solution algorithm for the NMMLP problem. The flowchart for the suggested method is presented in Section 5. Section 6 develops an application to a transportation problem. This section is divided into two subsections: (6.1) presents the formulation of the neutrosophic multi-objective transportation (NMOT) problem, and (6.2) proposes a solution strategy for the NMOT problem. The suggested methods are illustrated numerically in Section 6. Finally, in Section 7, there is a conclusion.

2 Preliminaries

The basic definitions of interval numbers, neutrosophic numbers, and uncertain harmonic mean are described in this section.

2.1 Interval numbers

An interval is defined as a = [a<sups>L</sups>, a<sups>U</sups>], where a<sups>L</sups> and a<sups>U</sups> are the left and right limits of the interval a on the real line R, respectively.

<bold>Definition 1.</bold> [[15]] Let m (a) and w (a) be the midpoint and width of an interval a = [a<sups>L</sups>, a<sups>U</sups>], respectively. Then,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mrow><msup><mi>a</mi><mi>L</mi></msup><mo>+</mo><msup><mi>a</mi><mi>U</mi></msup></mrow><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mrow><msup><mi>a</mi><mi>U</mi></msup><mo>-</mo><msup><mi>a</mi><mi>L</mi></msup></mrow><mo>)</mo></mrow></math>

<bold>Definition 2.</bold> [[15]] The following are the various operations on an interval a = [a<sups>L</sups>, a<sups>U</sups>]:

(i) The scalar multiplication:

ka = [ka<sups>L</sups>, ka<sups>U</sups>] , k ⩾ 0,

ka = [ka<sups>U</sups>, ka<sups>L</sups>] , k ⩽ 0

(ii) Absolute value:

|a| = [a<sups>L</sups>, a<sups>U</sups>] , a<sups>L</sups> ⩾ 0,

|a| = [0, max(- a<sups>L</sups>, a<sups>U</sups>) ] , a<sups>L</sups> < 0 < a<sups>U</sups>,

|a| = [- a<sups>U</sups>, - a<sups>L</sups>] , a<sups>U</sups> ⩽ 0.

<bold> (iii) Between two interval numbers _I_a_i_ = [_I_a_i__SP_L_sp_, _I_a_i__SP_U_sp_] and _I</bold>i_ = [b<sups>L</sups>, b<sups>U</sups>], the binary operation '*' is defined as ab = { α * β|α ∈ a, β ∈ b  } where a<sups>L</sups> ⩽ α ⩽ a<sups>U</sups> and b<sups>L</sups> ⩽ β ⩽ b<sups>U</sups>

2.2 Neutrosophic numbers

<bold>Definition 3.</bold> [[28]] N = m + nI symbolises a neutrosophic number, where m, n are real numbers where m is the determinate component and nI is the indeterminate part and I ∈ [I<sups>L</sups>, I<sups>U</sups>] indicates indeterminacy. As a result, N = [m + nI<sups>L</sups>, m + nI<sups>U</sups>] = [N<sups>L</sups>, N<sups>U</sups>].

<bold>Definition 4.</bold> [[28]] Let N<subs>1</subs> = m<subs>1</subs> + n<subs>1</subs>I<subs>1</subs> and N<subs>2</subs> = m<subs>2</subs> + n<subs>2</subs>I<subs>2</subs> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>1</mn></msub><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mn>1</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mn>2</mn></msub><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> , then <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>1</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>n</mi><mn>1</mn></msub><msubsup><mi>I</mi><mn>1</mn><mi>L</mi></msubsup><mo>,</mo><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>n</mi><mn>1</mn></msub><msubsup><mi>I</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>2</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msub><mi>m</mi><mn>2</mn></msub><mo>+</mo><msub><mi>n</mi><mn>2</mn></msub><msubsup><mi>I</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msub><mi>m</mi><mn>2</mn></msub><mo>+</mo><msub><mi>n</mi><mn>2</mn></msub><msubsup><mi>I</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> . The following are the different operations on neutrosophic numbers:

(i) Addition: <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>1</mn></msub><mo>+</mo><msub><mi>N</mi><mn>2</mn></msub><mspace width="-0.16667em" /><mo>=</mo><mspace width="-0.16667em" /><mrow><mo>[</mo><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>+</mo><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup><mo>+</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> .

(ii) Subtraction: <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>1</mn></msub><mo>-</mo><msub><mi>N</mi><mn>2</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>-</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup><mo>-</mo></mrow><mo /></mrow><mrow><mo /><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup></mrow><mo>]</mo></mrow></math> .

(iii) Multiplication:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi>N</mi><mn>1</mn></msub><mo>*</mo><msub><mi>N</mi><mn>2</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mi mathvariant="italic">min</mi><mrow><mo>(</mo><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo /></mrow><mo>,</mo></mrow><mo /></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo /><mrow><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center"><mi mathvariant="italic">max</mi><mrow><mo>(</mo><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo /></mrow><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo /><mrow><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup><mo>*</mo><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow><mo>)</mo></mrow><mo>.</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(iv) Division: <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>1</mn></msub><mspace width="-0.16667em" /><mo>&#247;</mo><mspace width="-0.16667em" /><msub><mi>N</mi><mn>2</mn></msub><mspace width="-0.16667em" /><mo>=</mo><mspace width="-0.16667em" /><mrow><mo>[</mo><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mspace width="-0.16667em" /><mrow><mo>[</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mn>1</mn><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup></mrow></mfrac></mrow><mo>]</mo></mrow></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>1</mn></msub><mspace width="-0.16667em" /><mo>&#247;</mo><mspace width="-0.16667em" /><msub><mi>N</mi><mn>2</mn></msub><mspace width="-0.16667em" /><mo>=</mo><mspace width="-0.16667em" /><mspace width="-0.16667em" /><mrow><mo>{</mo><mrow><mspace width="-0.16667em" /><mspace width="-0.16667em" /><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mspace width="-0.16667em" /><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi mathvariant="italic">min</mi><mspace width="-0.16667em" /><mrow><mo>(</mo><mrow><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mi mathvariant="italic">max</mi><mrow><mo>(</mo><mrow><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>L</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo><mfrac><mrow><msubsup><mi>N</mi><mn>1</mn><mi>U</mi></msubsup></mrow><mrow><msubsup><mi>N</mi><mn>2</mn><mi>U</mi></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow><mspace width="-0.16667em" /></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mi mathvariant="italic">Undefinedif</mi><mn>0</mn><mo>&#8712;</mo><msub><mi>N</mi><mn>2</mn></msub><mo>.</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow><mi mathvariant="italic">if</mi><mn>0</mn><mo>&#8713;</mo><mspace width="-0.16667em" /><msub><mi>N</mi><mn>2</mn></msub></math> ,

2.3 Uncertain harmonic mean

<bold>Definition 5.</bold> [[34]] Let WHM : (R<sups>+</sups>) <sups>n</sups> → R<sups>+</sups>, if

(1) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">WHM</mi><mrow><mo>(</mo><mrow><msub><mi>b</mi><mn>1</mn></msub><mo>,</mo><msub><mi>b</mi><mn>2</mn></msub><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>b</mi><mi>n</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mrow><msub><mi>&#969;</mi><mi>j</mi></msub></mrow><mrow><msub><mi>b</mi><mi>j</mi></msub></mrow></mfrac></mrow></mfrac></math>

then WHM is called a weighted harmonic mean operator. Where b<subs>j</subs> (j = 1, 2,  ... , n) is a set of positive real numbers and ω = (ω<subs>1</subs>, ω<subs>2</subs>,  ... , ω<subs>n</subs>) <sups>T</sups> is the weight vector of b<subs>j</subs> (j = 1, 2,  ... , n), with ω<subs>j</subs> ⩾ 0, and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>&#969;</mi><mi>j</mi></msub><mo>=</mo><mn>1</mn></math> . The R<sups>+</sups> contains all positive real numbers. WHM (b<subs>1</subs>, b<subs>2</subs>, ..., b<subs>n</subs>) = b<subs>j</subs>, especially, if ω<subs>i</subs> = 1, ω<subs>j</subs> = 0, j ≠ i. If <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#969;</mi><mo>=</mo><msup><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>,</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>,</mo><mo>...</mo><mo>,</mo><mfrac><mn>1</mn><mi>n</mi></mfrac></mrow><mo>)</mo></mrow><mi>T</mi></msup></math> , then the WHM operator is simplified to the harmonic mean (H.M.) operator:

(2) <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mstyle mathvariant="bold-italic"><mi>HM</mi></mstyle></mrow><mrow><mo>(</mo><mrow><msub><mrow><mstyle mathvariant="bold-italic"><mi>b</mi></mstyle></mrow><mn>1</mn></msub><mo>,</mo><msub><mrow><mstyle mathvariant="bold-italic"><mi>b</mi></mstyle></mrow><mn>2</mn></msub><mo>,</mo><mo>...</mo><mo>,</mo><msub><mrow><mstyle mathvariant="bold-italic"><mi>b</mi></mstyle></mrow><mi>n</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mi>n</mi><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>1</mn><mrow><msub><mi>b</mi><mi>j</mi></msub></mrow></mfrac></mrow></mfrac></math>

<bold>Definition 6.</bold> [[34]] Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mi>j</mi></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> (j = 1, 2,  ... , n) be a set of interval numbers, and WHM : ψ<sups>n</sups> → ψ (ψisthesetofallintervalnumbers), if

(3) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><mi mathvariant="italic">UWHM</mi><mrow><mo>(</mo><mrow><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mn>1</mn></msub><mo>,</mo><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mn>2</mn></msub><mo>,</mo><mo>...</mo><mo>,</mo><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mi>n</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mrow><msub><mi>&#969;</mi><mi>j</mi></msub></mrow><mrow><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mi>j</mi></msub></mrow></mfrac></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mn>1</mn><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mrow><msub><mi>&#969;</mi><mi>j</mi></msub></mrow><mrow><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup></mrow></mfrac></mrow></mfrac><mo>,</mo><mfrac><mn>1</mn><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mrow><msub><mi>&#969;</mi><mi>j</mi></msub></mrow><mrow><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup></mrow></mfrac></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

where ω = (ω<subs>1</subs>, ω<subs>2</subs>, ..., ω<subs>n</subs>) <sups>T</sups> represents the weight vector of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mi>j</mi></msub><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></math> , with ω<subs>j</subs> ⩾ 0 and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>&#969;</mi><mi>j</mi></msub><mo>=</mo><mn>1</mn></math> . Then the UWHM operator is reduced to the uncertain harmonic mean (UHM) operator when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#969;</mi><mo>=</mo><msup><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>,</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>,</mo><mo>,</mo><mo>...</mo><mo>,</mo><mfrac><mn>1</mn><mi>n</mi></mfrac></mrow><mo>)</mo></mrow><mi>T</mi></msup></math> :

(4) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">UHM</mi><mrow><mo>(</mo><mrow><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mn>1</mn></msub><mo>,</mo><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mn>2</mn></msub><mo>,</mo><mo>...</mo><mo>,</mo><msub><mover accent="true"><mi>b</mi><mo>&#732;</mo></mover><mi>n</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mi>n</mi><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>1</mn><mrow><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup></mrow></mfrac></mrow></mfrac><mo>,</mo><mfrac><mi>n</mi><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>1</mn><mrow><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup></mrow></mfrac></mrow></mfrac></mrow><mo>]</mo></mrow></math>

3 Methodology

3.1 Formulation of the problem

Consider the following neotrosophic multi-level multi-objective linear programming (NMMLP) problem: First-level decision maker (FLDM):

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>F</mi><mn>11</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mn>111</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mn>112</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mn>11</mn><msub><mi>m</mi><mn>11</mn></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>F</mi><mn>12</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mn>121</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mn>122</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mn>12</mn><msub><mi>m</mi><mn>12</mn></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

wherex <subs>2</subs>, x<subs>3</subs>, ..., x<subs>n</subs>solves,

Second-level decision maker (SLDM):

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>F</mi><mn>21</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mn>211</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mn>212</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mn>21</mn><msub><mi>m</mi><mn>21</mn></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>F</mi><mn>22</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mn>221</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mn>222</mn><mrow><mi>N</mi><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mn>22</mn><msub><mi>m</mi><mn>22</mn></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

wherex <subs>3</subs>, x<subs>4</subs>, ..., x<subs>n</subs>solves,

wherex <subs>p</subs>, x<subs>p+1</subs>, ..., x<subs>n</subs>solves,

Pth-level decision maker (Pth LDM):

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>p</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>p</mi><mn>1</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>p</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>p</mi><mn>11</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>12</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>p</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>p</mi><mn>2</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>p</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>p</mi><mn>21</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>22</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

wherex <subs>p+1</subs>, x<subs>p+2</subs>, ..., x<subs>n</subs>solves,

subject to

(5) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>N</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msub><mi>a</mi><mi mathvariant="italic">rj</mi></msub><mo>+</mo><msub><mi>b</mi><mi mathvariant="italic">rj</mi></msub><msub><mi>I</mi><mi mathvariant="italic">rj</mi></msub></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10877;</mo><mrow><mo>(</mo><mrow><msub><mo>&#8733;</mo><mi>r</mi></msub><mo>+</mo><msub><mi>&#946;</mi><mi>r</mi></msub><msub><mi>I</mi><mi>r</mi></msub></mrow><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>q</mi></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10878;</mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

where x<subs>i</subs> ∈ R<sups>ni</sups>, n<subs>i</subs> ⩾ 1, (i = 1, 2, ..., p) is a vector of decision variables representing decision makers' control, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><msub><mi>n</mi><mi>i</mi></msub><mo>=</mo><mi>n</mi></math> . G<sups>N</sups> is the feasible choice, (a<subs>rj</subs> + b<subs>rj</subs>I<subs>rj</subs>) is an r × j neotrosophic numbers-coefficients matrix, (∝ <subs>r</subs> + β<subs>r</subs>I<subs>r</subs>) is an neotrosophic number vector, and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>F</mi><mi mathvariant="italic">ik</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi mathvariant="italic">ik</mi><mn>1</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi mathvariant="italic">ik</mi><mn>2</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><msub><mi mathvariant="italic">ikm</mi><mi mathvariant="italic">ik</mi></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math> (i = 1, 2, ..., p ; k = 1, 2) is the vector of S<subs>i</subs> distinct objective functions with neotrosophic numbers coefficients for the ith-level decision maker,

(6) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>+</mo><mrow><mo>(</mo><mrow><msub><mi>c</mi><mi mathvariant="italic">ikt</mi></msub><mo>+</mo><msub><mi>d</mi><mi mathvariant="italic">ikt</mi></msub><msub><mi>I</mi><mi mathvariant="italic">ikt</mi></msub></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>p</mi><mo>;</mo><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mi mathvariant="italic">ik</mi></msub><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

t = 1, 2, ..., m<subs>1k</subs> for the first-level objective functions,

t = 1, 2, ..., m<subs>2k</subs> for the second-level objective functions,

t = 1, 2, ..., m<subs>pk</subs> for the Pth-level objective functions.

Where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="italic">rj</mi></msub><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">rj</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">rj</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="italic">rs</mi></msub><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">rs</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">rs</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi>r</mi></msub><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi>r</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi>r</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mi mathvariant="italic">ikt</mi></msub><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">ikt</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">ikt</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>I</mi><mi mathvariant="italic">ij</mi><mi>t</mi></msubsup><mo>&#8712;</mo><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi mathvariant="italic">tL</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi mathvariant="italic">tU</mi></msubsup></mrow><mo>]</mo></mrow></math> and a<subs>rj</subs>, b<subs>rj</subs>, ∝<subs>r</subs>, β<subs>r</subs>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>d</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup></math> , c<subs>ikt</subs> and d<subs>ikt</subs> are real numbers, (i = 1, 2, ..., p ; t = 1, 2, ..., m<subs>ik</subs> ; k = 1, 2), (j = 1, 2, ..., n) and (r = 1, 2, ..., q).

The NMMLP problem can therefore be related to each level as follows:

ith-level decision maker (ith LDM):

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>i</mi><mn>1</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>i</mi><mn>11</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>12</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>1</mn><msub><mi>m</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>i</mi><mn>2</mn></mrow><mi>N</mi></msubsup><mspace width="-0.16667em" /><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mspace width="-0.16667em" /><mo>=</mo><mspace width="-0.16667em" /><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><mspace width="-0.16667em" /><mrow><mo>(</mo><mrow><mspace width="-0.16667em" /><mrow><msubsup><mi>f</mi><mrow><mi>i</mi><mn>21</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mspace width="-0.16667em" /><mo>,</mo><mspace width="-0.16667em" /><msubsup><mi>f</mi><mrow><mi>i</mi><mn>22</mn></mrow><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><mspace width="-0.16667em" /><msubsup><mi>f</mi><mrow><mi>i</mi><mn>2</mn><msub><mi>m</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub></mrow><mi>N</mi></msubsup><mspace width="-0.16667em" /><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mspace width="-0.16667em" /></mrow><mo>)</mo></mrow><mspace width="-0.16667em" /><mspace width="-0.16667em" /><mo>,</mo></math>

wherex <subs>i+1</subs>, x<subs>i+2</subs>, ..., x<subs>n</subs>solves,

subject to

(7) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>N</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msub><mi>a</mi><mi mathvariant="italic">rj</mi></msub><mo>+</mo><msub><mi>b</mi><mi mathvariant="italic">rj</mi></msub><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">rj</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">rj</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>&#10877;</mo><mrow><mo>(</mo><mrow><msub><mo>&#8733;</mo><mi>r</mi></msub><mo>+</mo><msub><mi>&#946;</mi><mi>r</mi></msub><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi>r</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi>r</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10878;</mo><mn>0</mn><mo>.</mo><mrow><mo>(</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>q</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

where

(8) <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi mathvariant="italic">tL</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi mathvariant="italic">tU</mi></msubsup></mrow><mo>]</mo></mrow></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mrow><mo>(</mo><mrow><msub><mi>c</mi><mi mathvariant="italic">ikt</mi></msub><mo>+</mo><msub><mi>d</mi><mi mathvariant="italic">ikt</mi></msub><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">ikt</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">ikt</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow><mo>.</mo></math>

3.2 The NMMLP problem in its crisp form

This section demonstrates how to turn an NMMLP problem into a crisp multi-level multi-objective linear programming (MMLP) problem.

Proposition 1 [[24]] Consider the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mrow><mo>[</mo><mrow><msubsup><mi>a</mi><mi mathvariant="italic">ij</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>a</mi><mi mathvariant="italic">ij</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10877;</mo><mrow><mo>[</mo><mrow><msubsup><mi>b</mi><mi>i</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>b</mi><mi>i</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></math> , where x<subs>j</subs> ⩾ 0 (j = 1, 2,  ... , n). The minimum and maximum value range inequalities, respectively, are <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>a</mi><mi mathvariant="italic">ij</mi><mi>U</mi></msubsup><msub><mi>x</mi><mi>j</mi></msub><mo>&#10877;</mo><msubsup><mi>b</mi><mi>i</mi><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>a</mi><mi mathvariant="italic">ij</mi><mi>L</mi></msubsup><msub><mi>x</mi><mi>j</mi></msub><mo>&#10877;</mo><msubsup><mi>b</mi><mi>i</mi><mi>U</mi></msubsup></math> .

We solve the following problem according to Ramadan [[22]] to obtain the best optimal solution of the tth objective function <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> at the ith level, (i = 1, 2,  ... , p ; t = 1, 2,  ... , m<subs>ik</subs>, k = 1, 2).

Upper interval multi-level multi-objective linear programming (UI - MMLP) <subs>i</subs> problem:

ith-level decision maker (ith LDM):

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>i</mi><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>i</mi><mn>11</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>12</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>1</mn><msub><mi>m</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>i</mi><mn>2</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>i</mi><mn>21</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>22</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>2</mn><msub><mi>m</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

wherex<subs>i+1</subs>, x<subs>i+2</subs>, ..., x<subs>n</subs> solves,

subject to

(9) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>U</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msub><mi>a</mi><mi mathvariant="italic">rj</mi></msub><mo>+</mo><msub><mi>b</mi><mi mathvariant="italic">rj</mi></msub><msubsup><mi>I</mi><mi mathvariant="italic">rj</mi><mi>L</mi></msubsup></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10877;</mo><mrow><mo>(</mo><mrow><msub><mo>&#8733;</mo><mi>r</mi></msub><mo>+</mo><msub><mi>&#946;</mi><mi>r</mi></msub><msubsup><mi>I</mi><mi>r</mi><mi>U</mi></msubsup></mrow><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10878;</mo><mn>0</mn><mo>.</mo><mrow><mo>(</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>q</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

where

(10) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi mathvariant="italic">tU</mi></msubsup></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>+</mo><mrow><mo>(</mo><mrow><msub><mi>c</mi><mi mathvariant="italic">ikt</mi></msub><mo>+</mo><msub><mi>d</mi><mi mathvariant="italic">ikt</mi></msub><msubsup><mi>I</mi><mi mathvariant="italic">ikt</mi><mi>U</mi></msubsup></mrow><mo>)</mo></mrow><mo>.</mo></math>

The following problem, as stated by Ramadan [[22]], yields the worst optimal solution of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">it</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> .

Lower interval multi-level multi-objective linear programming (LI - MMLP) <subs>i</subs> problem:

ith-level decision maker (ith LDM):

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>i</mi><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>i</mi><mn>11</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>12</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>1</mn><msub><mi>m</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msubsup><mi>F</mi><mrow><mi>i</mi><mn>2</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mo>min</mo><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mrow><mi>i</mi><mn>21</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>22</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mrow><mi>i</mi><mn>2</mn><msub><mi>m</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo></math>

wherex<subs>i+1</subs>, x<subs>i+2</subs>, ..., x<subs>n</subs> solves,

subject to

(11) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="right" /><mtd columnalign="left"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mtd></mtr><mtr><mtd columnalign="right" /><mtd columnalign="left"><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msub><mi>a</mi><mi mathvariant="italic">rj</mi></msub><mo>+</mo><msub><mi>b</mi><mi mathvariant="italic">rj</mi></msub><msubsup><mi>I</mi><mi mathvariant="italic">rj</mi><mi>U</mi></msubsup></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10877;</mo><mrow><mo>(</mo><mrow><msub><mo>&#8733;</mo><mi>r</mi></msub><mo>+</mo><msub><mi>&#946;</mi><mi>r</mi></msub><msubsup><mi>I</mi><mi>r</mi><mi>L</mi></msubsup></mrow><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>&#10878;</mo><mn>0</mn><mo>.</mo><mrow><mo>(</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>q</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></mtd></mtr></mtable></math>

where

(12) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ikj</mi><mi>t</mi></msubsup><msubsup><mi>I</mi><mi mathvariant="italic">ikj</mi><mi mathvariant="italic">tL</mi></msubsup></mrow><mo>)</mo></mrow><msub><mi>x</mi><mi>j</mi></msub><mo>+</mo><mrow><mo>(</mo><mrow><msub><mi>c</mi><mi mathvariant="italic">ikt</mi></msub><mo>+</mo><msub><mi>d</mi><mi mathvariant="italic">ikt</mi></msub><msubsup><mi>I</mi><mi mathvariant="italic">ikt</mi><mi>L</mi></msubsup></mrow><mo>)</mo></mrow><mo>.</mo></math>

Where <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>F</mi><mi mathvariant="italic">ik</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>F</mi><mi mathvariant="italic">ik</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>F</mi><mi mathvariant="italic">ik</mi><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>]</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>]</mo></mrow></math> . In interval form, the optimal value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mrow><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>]</mo></math> . The best and worst objective values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> are denoted by <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , respectively.

3.3 A single objective function multi-level linear programming problem

3.3.1 FLDM problem

Find the individual optimum solutions for each of the FLDM problem's objective functions, as follows:

(13) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>max</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></munder><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>max</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></munder><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mn>11</mn></msub></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(14) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></munder><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></munder><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mn>12</mn></msub></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>1</mn><mi>k</mi></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>1</mn><mi>k</mi></mrow><mi>U</mi></msubsup></math> of the optimum values of the FLDM problem's objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mrow><mn>1</mn><mi mathvariant="italic">kt</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mrow><mn>1</mn><mi mathvariant="italic">kt</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , respectively. As a result:

(15) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi mathvariant="italic">UHM</mi><mn>11</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><msub><mi>m</mi><mn>11</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>11</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mi>m</mi><mn>11</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>11</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(16) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi mathvariant="italic">UHM</mi><mn>12</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><msub><mi>m</mi><mn>12</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>12</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mi>m</mi><mn>12</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>12</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>1</mn><mo>&#8467;</mo></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>1</mn><mo>&#8467;</mo></mrow><mi>U</mi></msubsup></math> , ℓ = (1, 2), can have positive or negative values. If they're negative, we look at the absolute values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>1</mn><mo>&#8467;</mo></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>1</mn><mo>&#8467;</mo></mrow><mi>U</mi></msubsup></math> , where ℓ = (1, 2).

We use the harmonic mean technique to transform FLDM problems into the following single-objective decision-making problems in order to achieve the preferred solution.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi mathvariant="italic">SLP</mi><mn>1</mn><mi>U</mi></msubsup><mo>:</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>v</mi><mn>1</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>11</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>max</mo><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mi>U</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>L</mi></msubsup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>-</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>12</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>min</mo><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mi>U</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

wherex<subs>2</subs>, ..., x<subs>n</subs> solves,

subject to

(17) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi mathvariant="italic">SLP</mi><mn>1</mn><mi>L</mi></msubsup><mo>:</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>v</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>11</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>max</mo><msubsup><mi>f</mi><mrow><mn>11</mn><mi>t</mi></mrow><mi>L</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>U</mi></msubsup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>-</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>12</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>min</mo><msubsup><mi>f</mi><mrow><mn>12</mn><mi>t</mi></mrow><mi>L</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>U</mi></msubsup></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

wherex<subs>2</subs>, ..., x<subs>n</subs> solves,

subject to

(18) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></math>

As a result, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>F</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>v</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>v</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">UF</mi></msubsup></mrow><mo>]</mo></mrow></math> is the optimal solution for FLDM problems, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">UF</mi></msubsup></mrow><mo>]</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></math>

3.3.2 SLDM Problem

Find the individual solutions for each of the SLDM problem's objective functions, as follows:

(19) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>max</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">UF</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>max</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">LF</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mn>21</mn></msub></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(20) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">UF</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">LF</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mn>22</mn></msub></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>2</mn><mi>k</mi></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>2</mn><mi>k</mi></mrow><mi>U</mi></msubsup></math> of the SLDM problems' objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mrow><mn>2</mn><mi mathvariant="italic">kt</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mrow><mn>2</mn><mi mathvariant="italic">kt</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , respectively. As a result:

(21) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi mathvariant="italic">UHM</mi><mn>21</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>21</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi mathvariant="italic">UHM</mi><mn>21</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><msub><mi>m</mi><mn>21</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>21</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mi>m</mi><mn>21</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>21</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(22) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi mathvariant="italic">UHM</mi><mn>22</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>22</mn><mi>L</mi></msubsup><mo>,</mo><msubsup><mi mathvariant="italic">UHM</mi><mn>22</mn><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><msub><mi>m</mi><mn>22</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>22</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mi>m</mi><mn>22</mn></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>22</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>2</mn><mo>&#8467;</mo></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>2</mn><mo>&#8467;</mo></mrow><mi>U</mi></msubsup></math> , ℓ = (1, 2), can have positive or negative values. If they're negative, we look at the absolute values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>2</mn><mo>&#8467;</mo></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mn>2</mn><mo>&#8467;</mo></mrow><mi>U</mi></msubsup></math> , where ℓ = (1, 2).

By setting <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">UF</mi></msubsup></mrow><mo>]</mo></mrow></math> to the SLDM constraints, the SLDM specifies his or her problem from the perspective of the FLDM, allowing the SLDM to be reformulated as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi mathvariant="italic">SLP</mi><mn>2</mn><mi>U</mi></msubsup><mo>:</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>v</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>21</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>max</mo><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mi>U</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>21</mn><mi>L</mi></msubsup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>-</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>22</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>min</mo><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mi>U</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>22</mn><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

wherex<subs>3</subs>, ..., x<subs>n</subs> solves,

subject to

(23) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mtd></mtr><mtr><mtd columnalign="center"><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">UF</mi></msubsup></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi mathvariant="italic">SLP</mi><mn>2</mn><mi>L</mi></msubsup><mo>:</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>v</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>21</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>max</mo><msubsup><mi>f</mi><mrow><mn>21</mn><mi>t</mi></mrow><mi>L</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>21</mn><mi>U</mi></msubsup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>-</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mn>22</mn></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>min</mo><msubsup><mi>f</mi><mrow><mn>22</mn><mi>t</mi></mrow><mi>L</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mn>22</mn><mi>U</mi></msubsup></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

wherex<subs>3</subs>, ..., x<subs>n</subs> solves,

subject to

(24) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mtd></mtr><mtr><mtd columnalign="center"><msub><mi>x</mi><mn>1</mn></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">LF</mi></msubsup></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

As a result, the optimal SLDM solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>F</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>v</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><msubsup><mi>v</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi mathvariant="italic">US</mi></msubsup></mrow><mo>]</mo></mrow></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">UF</mi></msubsup></mrow><mo>]</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi>S</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">US</mi></msubsup></mrow><mo>]</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></math> .

3.3.3 Pth-LDM problem

Find the individual optimum solutions for each of the Pth-LDM problem's objective functions, as follows:

(25) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>max</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Uith</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>max</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Lith</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub><mo>;</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>p</mi><mo>-</mo><mn>1</mn></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(26) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Uith</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mtable><mtr><mtd columnalign="center"><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Lith</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></munder><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>(</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub><mo>;</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>p</mi><mo>-</mo><mn>1</mn></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mi mathvariant="italic">pk</mi><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mi mathvariant="italic">pk</mi><mi>U</mi></msubsup></math> of the optimum values of the Pth-LDM problems' objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">pkt</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">pkt</mi><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , respectively. As a result:

(27) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>1</mn></mrow><mi>L</mi></msubsup><mo>,</mo><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>1</mn></mrow><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

(28) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msub><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>2</mn></mrow><mi>L</mi></msubsup><mo>,</mo><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>2</mn></mrow><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mo>&#8467;</mo></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mo>&#8467;</mo></mrow><mi>U</mi></msubsup></math> , ℓ = (1, 2), can have positive or negative values. If they're negative, we look at the absolute values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mo>&#8467;</mo></mrow><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mo>&#8467;</mo></mrow><mi>U</mi></msubsup></math> , where ℓ = (1, 2).

Finally, the (P-1)th-LDM decision variables are embedded in the Pth-LDM constraints. By setting <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">ith</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Lith</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Uith</mi></msubsup></mrow><mo>]</mo></mrow></math> to the Pth-LDM constraints, the Pth-LDM specifies his/her problem from the perspective of the (P-1)th-LDM, allowing the Pth-LDM to be reformulated as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi mathvariant="italic">SLP</mi><mi>p</mi><mi>U</mi></msubsup><mo>:</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>p</mi></msub></mrow></munder><msubsup><mi>v</mi><mi>p</mi><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>max</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mi>U</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>1</mn></mrow><mi>L</mi></msubsup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>-</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>min</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mi>U</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>2</mn></mrow><mi>L</mi></msubsup></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

wherex<subs>P+1</subs>, ..., x<subs>n</subs> solves,

subject to

(29) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mtd></mtr><mtr><mtd columnalign="center"><msub><mi>x</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Uith</mi></msubsup></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi mathvariant="italic">SLP</mi><mi>p</mi><mi>L</mi></msubsup><mo>:</mo><munder><mo>max</mo><mrow><msub><mi>x</mi><mi>p</mi></msub></mrow></munder><msubsup><mi>v</mi><mi>p</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>max</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>1</mn><mi>t</mi></mrow><mi>L</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>1</mn></mrow><mi>U</mi></msubsup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center"><mo>-</mo><mfrac><mrow><munderover><mo>&#8721;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>m</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mrow></munderover><mrow><mo>(</mo><mrow><mo>min</mo><msubsup><mi>f</mi><mrow><mi>p</mi><mn>2</mn><mi>t</mi></mrow><mi>L</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mrow><msubsup><mi mathvariant="italic">UHM</mi><mrow><mi>p</mi><mn>2</mn></mrow><mi>U</mi></msubsup></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

wherex<subs>p+1</subs>, ..., x<subs>n</subs> solves,

subject to

(30) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mtd></mtr><mtr><mtd columnalign="center"><msub><mi>x</mi><mi>j</mi></msub><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Lith</mi></msubsup></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

Finally, the solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>T</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi mathvariant="italic">Pth</mi></msubsup></mrow><mo>)</mo></math> is the Pth-LDM solution as well as the compromised NMMLP solution.

3.1 An interactive model for the NMMLP problem

First, the FLDM uses the FLDM satisfactoriness test function to determine whether the proposed solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi>S</mi></msubsup></mrow><mo>)</mo></math> is a preferred solution and acceptable to him/her, or whether it may be adjusted.

(31) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>F</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>1</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>U</mi></mstyle></mrow></msubsup><mrow><mo>(</mo><mrow><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>1</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>UF</mi></mstyle></mrow></msubsup><mo>,</mo><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>UF</mi></mstyle></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>n</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>UF</mi></mstyle></mrow></msubsup></mrow><mo>)</mo></mrow><mspace width="-0.16667em" /><mo>-</mo><mspace width="-0.16667em" /><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>F</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>1</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>U</mi></mstyle></mrow></msubsup><mspace width="-0.16667em" /><mrow><mo>(</mo><mrow><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>1</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>UF</mi></mstyle></mrow></msubsup><mo>,</mo><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>US</mi></mstyle></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>n</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>US</mi></mstyle></mrow></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mrow><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>F</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>1</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>U</mi></mstyle></mrow></msubsup><mrow><mo>(</mo><mrow><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>1</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>UF</mi></mstyle></mrow></msubsup><mo>,</mo><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>US</mi></mstyle></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mrow><mstyle mathvariant="bold-italic"><mi>x</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>n</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>US</mi></mstyle></mrow></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mrow><mstyle mathvariant="bold"><mn>2</mn></mstyle></mrow></msub></mrow></mfrac><mspace width="-0.16667em" /><mo>&#10877;</mo><mspace width="-0.16667em" /><msup><mrow><mstyle mathvariant="bold-italic"><mi>&#948;</mi></mstyle></mrow><mrow><mstyle mathvariant="bold-italic"><mi>FU</mi></mstyle></mrow></msup></math>

(32) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LF</mi></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LS</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LS</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mspace width="-0.16667em" /><mo>&#10877;</mo><mspace width="-0.16667em" /><msup><mi>&#948;</mi><mi mathvariant="italic">FL</mi></msup></math>

As a result, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi>S</mi></msubsup></mrow><mo>)</mo></math> is a recommended FLDM solution, where δ<sups>F</sups> = [δ<sups>FL</sups>, δ<sups>FU</sups>] is a relatively small positive constant provided by the FLDM.

Second, the SLDM uses the SLDM satisfactoriness test function to determine whether the offered solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>3</mn></mrow><mi>T</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi>T</mi></msubsup></mrow><mo>)</mo></math> is a preferred and acceptable solution to him/her, or whether it may be adjusted.

(33) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="right" /><mtd columnalign="left"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">UF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">US</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">US</mi></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">UF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">US</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi mathvariant="italic">UT</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">UT</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">UF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">US</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi mathvariant="italic">UT</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">UT</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right" /><mtd columnalign="left"><mo>&#10877;</mo><msup><mi>&#948;</mi><mi mathvariant="italic">SU</mi></msup></mtd></mtr></mtable></math>

(34) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="right" /><mtd columnalign="left"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LS</mi></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi mathvariant="italic">LT</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LT</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi mathvariant="italic">LT</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LT</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right" /><mtd columnalign="left"><mo>&#10877;</mo><msup><mi>&#948;</mi><mi mathvariant="italic">SL</mi></msup></mtd></mtr></mtable></math>

So <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>3</mn></mrow><mi>T</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi>T</mi></msubsup></mrow><mo>)</mo></math> is a preferable SLDM solution, where δ<sups>S</sups> is a small positive constant provided by the SLDM.

Similarly, the (P-1)th-LDM uses the (P-1)th-LDM satisfactoriness test function to determine whether the proposed solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>3</mn></mrow><mi>T</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi mathvariant="italic">Pth</mi></msubsup></mrow><mo>)</mo></math> is a preferred and acceptable solution to him/her, or whether it can be adjusted.

(35) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">UF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">US</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mrow><mi>U</mi><mrow><mo>(</mo><mrow><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow><mi mathvariant="italic">th</mi></mrow></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">UF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">US</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">UPth</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">UF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">US</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi mathvariant="italic">UT</mi></msubsup><mo>,</mo><mo>...</mo><msubsup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>U</mi><mrow><mo>(</mo><mrow><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow><mi mathvariant="italic">th</mi></mrow></msubsup><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">UPth</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>&#10877;</mo><msup><mi>&#948;</mi><mrow><mrow><mo>(</mo><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow><mo>)</mo></mrow><mi mathvariant="italic">thU</mi></mrow></msup></math>

(36) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mrow><mi>L</mi><mrow><mo>(</mo><mrow><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow><mi mathvariant="italic">th</mi></mrow></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LPth</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi mathvariant="italic">LF</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">LS</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi mathvariant="italic">LT</mi></msubsup><mo>,</mo><mo>...</mo><msubsup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>L</mi><mrow><mo>(</mo><mrow><mrow><mi>P</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow><mi mathvariant="italic">th</mi></mrow></msubsup><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">LPth</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>&#10877;</mo><msup><mi>&#948;</mi><mrow><mrow><mo>(</mo><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow><mo>)</mo></mrow><mi mathvariant="italic">thL</mi></mrow></msup></math>

As a result, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>3</mn></mrow><mi>T</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi mathvariant="italic">Pth</mi></msubsup></mrow><mo>)</mo></math> is a preferred solution to the Pth-LDM, where δ<sups>(p-1)th</sups> = [δ<sups>(p-1)thL</sups>, δ<sups>(p-1)thU</sups>] is a small positive constant provided by the Pth-LDM, implying that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>3</mn></mrow><mi>T</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi mathvariant="italic">Pth</mi></msubsup></mrow><mo>)</mo></math> is a recommended solution to the NMMLP problems

4 An algorithm for solving NMMLP problem

The following steps explain a solution algorithm for the NMMLP problem, in which all decision parameters in the objective functions and constraints are neutrosophic numbers:

Step1: Formulate the NMMLP problem, go to Step 2.

Step2: Set i = 1.

Step3: Proceed to Step 21 if the ith-LDM finds the best solution. If not, proceed to Step 4.

Step4: Formulate the ith-LDM problem, then go to Step 5.

Step5: Use interval numbers to represent neutrosophic parameters in the objective functions and constraints of the ith-LDM.

Step6: The ith-LDM employs the interval method [[22]] to convert all neutrosophic parameters to crisp nature, yielding two crisp MMLP problems, (UI - MMLP) <subs>i</subs> and (LI - MMLP) <subs>i</subs>.

Step7: Determine the best and worst optimum solutions for each objective function in the ith-LDM problem.

Step8: Formulate the (UI - MMLP) <subs>i</subs> problem, then go to Step 9.

Step9: Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mi mathvariant="italic">ik</mi><mi>L</mi></msubsup></math> for the optimum values of the objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> of ith-LDM problems.

Step10: Convert the (UI - MMLP) <subs>i</subs> problem to a single-objective decision-making problem using the harmonic mean technique.

Step11: Solve the resulting linear programming problem to acquire the upper solution of the ith-LDM problem, then go to Step 12.

Step12: If the (UI - MMLP) <subs>i</subs> problem's optimal solution, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Ui</mi></msubsup><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></math> , is found, proceed to Step 14, otherwise to Step 13.

Step13: The bounded variable constraints must be satisfied by all variables in the (UI - MMLP) <subs>i</subs> problem's objective functions and constraints.

Step14: Write the (LI - MMLP) <subs>i</subs> problem, then move on to Step 15.

Step15: Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mi mathvariant="italic">ik</mi><mi>U</mi></msubsup></math> of the optimum values of the objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi mathvariant="italic">ikt</mi><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> of ith-LDM problems.

Step16: Using the harmonic mean technique, convert the (LI - MMLP) <subs>i</subs> problem into single-objective decision-making problems.

Step17: Solve the resultant linear programming problem to acquire the ith-LDM problem's lower solution, then proceed to Step 18.

Step18: If the (LI - MMLP) <subs>i</subs> problem's optimal solution, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Li</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></math> , is found, proceed to Step 20; otherwise, proceed to Step 19.

Step19: The bounded variable constraints must be satisfied by all variables in the (LI - MMLP) <subs>i</subs> problem's objective functions and constraints.

Step20: <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi>i</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Li</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>j</mi></mrow><mi mathvariant="italic">Ui</mi></msubsup></mrow><mo>]</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></math> is the optimal solution obtained by the ith-LDM.

Step21: Move to Step 29 if i = k; otherwise, go to Step 22.

Step22: Set i = i + 1, then proceed to Step 23.

Step23: By setting <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>i</mi></mrow><mi>i</mi></msubsup><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>i</mi></mrow><mi mathvariant="italic">Ui</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mrow><mo>*</mo><mi>i</mi></mrow><mi>i</mi></msubsup><mo>=</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>i</mi></mrow><mi mathvariant="italic">Li</mi></msubsup></math> to the (UI - MMLP) <subs>i</subs> problem and (LI - MMLP) <subs>i</subs> problem, respectively, the ith-LDM specifies his or her problem from the perspective of the (i-1)th-LDM, then go to Step 3.

Step24: The value of δ<sups>(i-1)U</sups> is estimated by the (UI - MMLP) <subs>i-1</subs> problem.

Step25: If <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mrow><mi>U</mi><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mrow><mi>U</mi><mrow><mo>(</mo><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mrow><mi>U</mi><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">Up</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mrow><mi>U</mi><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">Ui</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">Up</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>&#10877;</mo><msup><mi>&#948;</mi><mrow><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow><mi>U</mi></mrow></msup></math> is valid, proceed to Step 28. If not, proceed to Step 24.

Step26: The value of δ<sups>(i-1)L</sups> is estimated by the (LI - MMLP) <subs>i-1</subs> problem.

Step27: If <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mrow><mi>L</mi><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mrow><mi>L</mi><mrow><mo>(</mo><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></msubsup></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mrow><mi>L</mi><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">Lp</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mrow><mi>L</mi><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi mathvariant="italic">Li</mi></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mi>n</mi><mi mathvariant="italic">Lp</mi></msubsup></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>&#10877;</mo><msup><mi>&#948;</mi><mrow><mrow><mo>(</mo><mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></mrow><mo>)</mo></mrow><mi>L</mi></mrow></msup></math> is valid, proceed to Step 28. If not, proceed to Step 24.

Step28: The <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mrow><mo>*</mo><mn>1</mn></mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>2</mn></mrow><mi>i</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mn>3</mn></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>x</mi><mrow><mo>*</mo><mi>n</mi></mrow><mi>P</mi></msubsup></mrow><mo>)</mo></math> solution is preferable to the ith-LDM.

Step29: The optimal solution of the NMMLP problem is obtained, go to Step 30.

Step30: Stop.

5 The proposed method's flowchart

The following flowchart depicts the steps of the above algorithm for addressing the NMMLP problem:

Graph: Fig. 1 A flowchart depicting the suggested problem's decision-making process.

6 Neutrosophic multi-objective transportation (NMOT) problem

This section proposes a new compromise approach for the multi-objective transportation (NMOT) problem, based on the harmonic mean technique, where the transportation cost, supply, and demand are all represented by neutrosophic numbers.

6.1 Mathematical model of (NMMTP) problem

NMOT problem is concerned with moving a product from k sources (s<subs>1</subs>, s<subs>2</subs>, ..., s<subs>k</subs>) to n destinations (d<subs>1</subs>, d<subs>2</subs>, ..., d<subs>n</subs>) while meeting r objectives <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>f</mi><mn>1</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mi>f</mi><mn>2</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mi>r</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></math> . Each source s<subs>i</subs> has available supply, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mi>i</mi><mi>N</mi></msubsup></math> , (i = 1, 2, ..., k), and each destination d<subs>j</subs>, (j = 1, 2, ..., n), has a specific level of demand. Furthermore, transferring a unit from source s<subs>i</subs> to destination d<subs>j</subs> incurs a penalty <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>N</mi></mrow></msubsup></math> for the objective <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , (s = 1, 2, ..., r). The corresponding penalty could be shipping costs, delivery time, or delivery safety, for example. Under the optimization aspect, the solution to this problem is to determine an unknown quantity of products, x<subs>ij</subs>, that were shipped from source s<subs>i</subs> to destination d<subs>j</subs>. The mathematical formulation of the NMOT problem can be described as follows using this description:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>min</mo><msup><mi>F</mi><mi>N</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mi>f</mi><mn>1</mn><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>f</mi><mi>r</mi><mi>N</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>N</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mi>N</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub></mrow><mo>)</mo></mrow></math> ,

subject to

(37) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>N</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><msubsup><mi>a</mi><mi>i</mi><mi>N</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><msubsup><mi>b</mi><mi>j</mi><mi>N</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>&#10878;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

Allow interval numbers to be used to represent all of the neotrosophic numbers in Problem (37):

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>N</mi></mrow></msubsup><mo>=</mo><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><msubsup><mi>I</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><mo>=</mo><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><mo>,</mo><msubsup><mi>I</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><msubsup><mi>I</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><mo>,</mo><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><mo>+</mo><msubsup><mi>d</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup><msubsup><mi>I</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><mo>,</mo><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math> ,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>a</mi><mi>i</mi><mi>N</mi></msubsup><mo>=</mo><msub><mi>a</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&#955;</mi><mi>i</mi></msub><msub><mi>I</mi><mi>i</mi></msub><mo>=</mo><msub><mi>a</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&#955;</mi><mi>i</mi></msub><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi>i</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi>i</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><msub><mi>a</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&#955;</mi><mi>i</mi></msub><msubsup><mi>I</mi><mi>i</mi><mi>L</mi></msubsup><mo>,</mo><msub><mi>a</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&#955;</mi><mi>i</mi></msub><msubsup><mi>I</mi><mi>i</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>a</mi><mi>i</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>a</mi><mi>i</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math> ,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>b</mi><mi>j</mi><mi>N</mi></msubsup><mo>=</mo><msub><mi>b</mi><mi>j</mi></msub><mo>+</mo><msub><mi>&#956;</mi><mi>j</mi></msub><msub><mi>I</mi><mi>j</mi></msub><mo>=</mo><msub><mi>b</mi><mi>j</mi></msub><mo>+</mo><msub><mi>&#956;</mi><mi>j</mi></msub><mrow><mo>[</mo><mrow><msubsup><mi>I</mi><mi>j</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>I</mi><mi>j</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><msub><mi>b</mi><mi>j</mi></msub><mo>+</mo><msub><mi>&#956;</mi><mi>j</mi></msub><msubsup><mi>I</mi><mi>j</mi><mi>L</mi></msubsup><mo>,</mo><msub><mi>b</mi><mi>j</mi></msub><mo>+</mo><msub><mi>&#956;</mi><mi>j</mi></msub><msubsup><mi>I</mi><mi>j</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

Where a<subs>i</subs>, b<subs>j</subs>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>d</mi><mi mathvariant="italic">ij</mi><mi>s</mi></msubsup></math> , λ<subs>i</subs>, and μ<subs>j</subs> are real numbers, (i = 1, 2, ..., k ; j = 1, 2, ..., n ; s = 1, 2, ..., r).

As a result, Problem (37) can be rewritten as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>min</mo><msup><mi>F</mi><mi>N</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><mrow><mo>[</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><mo>,</mo><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>U</mi></mrow></msubsup></mrow><mo>]</mo></mrow><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>,</mo><mo>...</mo><mo>,</mo></mrow><mo /></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo /><mrow><mspace width="2em" /><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><mrow><mo>[</mo><mrow><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><mo>,</mo><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup></mrow><mo>]</mo></mrow><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub></mrow><mo>)</mo></math>

subject to

(38) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>N</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>a</mi><mi>i</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>a</mi><mi>i</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><mrow><mo>[</mo><mrow><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup><mo>,</mo><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup></mrow><mo>]</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>&#10878;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

<bold>Definition 7.</bold> The neotrosophic transportation problem is called the balanced neotrosophic transportation problem if <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>a</mi><mi>i</mi><mi>L</mi></msubsup><mo>=</mo><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>a</mi><mi>i</mi><mi>U</mi></msubsup><mo>=</mo><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup></math> ; otherwise, it is called an unbalanced neotrosophic transportation problem.

6.2 A solution strategy for the NMOT problem

An NMOT problem is broken into the following two crisp multi-objective transportation problems, which are solved using classic transportation simplex algorithms, according to the methodology established in Subsection 3.2.

<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>P</mi><mi>L</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>L</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub></mrow><mo>)</mo></mrow></math> ,

subject to

(39) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>L</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><msubsup><mi>a</mi><mi>i</mi><mi>L</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><msubsup><mi>b</mi><mi>j</mi><mi>L</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>&#10878;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>P</mi><mi>U</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>U</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>U</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub></mrow><mo>)</mo></mrow></math> ,

subject to

(40) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>G</mi><mi>U</mi></msup><mo>=</mo><mrow><mo>{</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>R</mi><mi>n</mi></msup><mrow><mo>|</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><msubsup><mi>a</mi><mi>i</mi><mi>U</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>k</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><munderover><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>=</mo><msubsup><mi>b</mi><mi>j</mi><mi>U</mi></msubsup><mo>,</mo><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>&#10878;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo /></mrow></mrow><mo>}</mo></mrow></math>

Find the individual optimum solutions for each objective function, as follows:

(41) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></mrow></munder><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><munderover><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mo>,</mo></mtd></mtr><mtr><mtd columnalign="center"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup><mo>=</mo><munder><mo>min</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></munder><munderover><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><munderover><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub><mrow><mo>(</mo><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>r</mi></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

Calculate the UHM<sups>L</sups> and UHM<sups>U</sups> of the optimum values of the objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></math> , respectively. As a result:

(42) <math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><mi mathvariant="italic">UHM</mi><mo>=</mo><mrow><mo>[</mo><mrow><msup><mi mathvariant="italic">UHM</mi><mi>L</mi></msup><mo>,</mo><msup><mi mathvariant="italic">UHM</mi><mi>U</mi></msup></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mi>r</mi><mrow><munderover><mo>&#8721;</mo><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow><mi>r</mi></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac><mo>,</mo><mfrac><mi>r</mi><mrow><munderover><mo>&#8721;</mo><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow><mi>r</mi></munderover><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mfrac></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math>

UHM <sups>L</sups> and UHM<sups>U</sups>, can have positive or negative values. If they're negative, we look at the absolute values of UHM<sups>L</sups> and UHM<sups>U</sups>.

To arrive at the optimal solution, we apply the harmonic mean technique to reduce the NMOT problem into the following single-objective transportation problems.

<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="italic">STP</mi><mi>L</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>L</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msubsup><mo>&#8721;</mo><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow><mi>r</mi></msubsup><mrow><mo>(</mo><mrow><munder><mo>min</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></munder><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>L</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub></mrow><mo>)</mo></mrow></mrow><mrow><msup><mi mathvariant="italic">UHM</mi><mi>U</mi></msup></mrow></mfrac><mo>,</mo></math>

subject to

(43) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="italic">STP</mi><mi>U</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>U</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msubsup><mo>&#8721;</mo><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow><mi>r</mi></msubsup><mrow><mo>(</mo><mrow><munder><mo>min</mo><mrow><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>L</mi></msup></mrow></munder><msubsup><mo>&#8721;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>&#8721;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><msubsup><mi>c</mi><mi mathvariant="italic">ij</mi><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi>U</mi></mrow></msubsup><msub><mi>x</mi><mi mathvariant="italic">ij</mi></msub></mrow><mo>)</mo></mrow></mrow><mrow><msup><mi mathvariant="italic">UHM</mi><mi>L</mi></msup></mrow></mfrac><mo>,</mo></math>

subject to

(44) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><msup><mi>G</mi><mi>U</mi></msup></math>

The optimal interval solution of the neutrosophic multi-objective transportation problem is x<sups>*I</sups> = [x<sups>*L</sups>, x<sups>*U</sups>] when solving the two crisp transportation problems, STP<sups>L</sups> and STP<sups>U</sups>, one at a time using normal transportation simplex algorithms. F<sups>*I</sups> (x<sups>*I</sups>) is the optimal interval minimum transportation cost.

7 Numerical examples

To demonstrate the computational technique, we first explore a hypothetical case, followed by two examples for addressing a neutrosophic multi-objective transportation problem. It is assumed that I ∈ [0, 1] in these examples.

<h31 id="AN0161762875-21">Example 7.1.</h31>

Consider the following neotrosophic three-level multi-objective linear programming problem.

FLDM:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msub><mi>f</mi><mn>11</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msub><mi>f</mi><mn>12</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>14</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>-</mo><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msub><mi>f</mi><mn>13</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>20</mn><mo>+</mo><mn>13</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

SLDM:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msub><mi>f</mi><mn>21</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>9</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>11</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msub><mi>f</mi><mn>22</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>3</mn><mo>-</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>10</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>14</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msub><mi>f</mi><mn>23</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>11</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

TLDM:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msub><mi>f</mi><mn>31</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>9</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>10</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msub><mi>f</mi><mn>32</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>13</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>12</mn><mo>+</mo><mn>15</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msub><mi>f</mi><mn>33</mn></msub><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>13</mn><mi>I</mi></mrow><mo>]</mo></mrow><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></math>

subject to

[2 + 2Ix<subs>1</subs> + [2 + Ix<subs>2</subs> + [1 + Ix<subs>3</subs> ⩽ [10 + 7I]

[1 + 2Ix<subs>1</subs> + [1 + 4Ix<subs>2</subs> + [2 + Ix<subs>3</subs> ⩽ [8 + 10I]

x <subs>1</subs>, x<subs>2</subs>, x<subs>3</subs> ⩾ 0

The first stage in the solution technique is to change the original NMMLP problem into an MMLP problem with crisp coefficients and crisp decision variables using the arithmetic operations defined in Definitions 2 and 4.

To begin, the FLDM can be rewritten as follows:

The following is the problem for which the best solution is sought:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>11</mn><mi>L</mi></msubsup><mo>=</mo><mn>3</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>6</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>4</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>1</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>12</mn><mi>L</mi></msubsup><mo>=</mo><mn>14</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>5</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>6</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>13</mn><mi>L</mi></msubsup><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>20</mn></math>

subject to

2x<subs>1</subs> + 2x<subs>2</subs> + x<subs>3</subs> ⩽ 10

x <subs>1</subs> + x<subs>2</subs> + 2x<subs>3</subs> ⩽ 8

x <subs>1</subs>, x<subs>2</subs>, x<subs>3</subs> ⩾ 0

The following is a problem with the worst possible solution:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>11</mn><mi>U</mi></msubsup><mo>=</mo><mn>7</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>14</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>6</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>4</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>12</mn><mi>U</mi></msubsup><mo>=</mo><mn>16</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>8</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>2</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>12</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>13</mn><mi>U</mi></msubsup><mo>=</mo><mn>3</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>3</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>2</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>33</mn></math>

subject to

4x<subs>1</subs> + 3x<subs>2</subs> + 2x<subs>3</subs> ⩽ 20 3x<subs>1</subs> + 5x<subs>2</subs> + 2x<subs>3</subs> ⩽ 30

x <subs>1</subs>, x<subs>2</subs>, x<subs>3</subs> ⩾ 0

Table 1 shows the individual optimal solutions for the decision variables and the FLDM's objective functions.

Table 1 Individual optimal solutions for the FLDM problems

<table><colgroup><col align="justify" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /></colgroup><tbody><tr><td /><td colspan="7" align="center">FLDM</td></tr><tr><td /><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>11</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>12</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>13</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>11</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>12</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>13</mn><mi>U</mi></msubsup></math></p></td></tr><tr><td><italic>x</italic><sub>1</sub></td><td>0</td><td>5</td><td>0</td><td>0</td><td>5</td><td>0</td></tr><tr><td><italic>x</italic><sub>2</sub></td><td>4</td><td>0</td><td>0</td><td>5</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>3</sub></td><td>2</td><td>0</td><td>0</td><td>2.5</td><td>0</td><td>0</td></tr><tr><td>Optimal solution</td><td>33</td><td>76</td><td>20</td><td>89</td><td>92</td><td>33</td></tr><tr><td /><td colspan="7" align="center">SLDM</td></tr><tr><td /><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>21</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>22</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>23</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>21</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>22</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>23</mn><mi>U</mi></msubsup></math></p></td></tr><tr><td><italic>x</italic><sub>1</sub></td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td></tr><tr><td><italic>x</italic><sub>2</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>3</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>Optimal solution</td><td>11</td><td>19</td><td>13</td><td>27</td><td>34</td><td>30</td></tr><tr><td /><td colspan="7" align="center">TLDM</td></tr><tr><td /><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>31</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>32</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>33</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>31</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>32</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>33</mn><mi>U</mi></msubsup></math></p></td></tr><tr><td><italic>x</italic><sub>1</sub></td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td></tr><tr><td><italic>x</italic><sub>2</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>3</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>Optimal solution</td><td>-6</td><td>42</td><td>30</td><td>16</td><td>111</td><td>43</td></tr></tbody></table>

Calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>L</mi></msubsup></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>L</mi></msubsup></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>U</mi></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>U</mi></msubsup></math> of the optimum values of the objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mrow><mn>1</mn><mi>k</mi></mrow><mi>L</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mrow><mn>1</mn><mi>k</mi></mrow><mi>U</mi></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math> , (k = 1, 2), of FLDM problems, respectively. Such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>L</mi></msubsup><mo>=</mo><mn>46.0183</mn></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>L</mi></msubsup><mo>=</mo><mn>20</mn></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>11</mn><mi>U</mi></msubsup><mo>=</mo><mn>90.4751</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi mathvariant="italic">UHM</mi><mn>12</mn><mi>U</mi></msubsup><mo>=</mo><mn>33</mn></math> .

The FLDM problems' equivalent single objective function can be written as follows:

The following is the problem for which the best solution is sought:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mo>=</mo><mn>0.1576</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>0.061</mn><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>0.025</mn><msub><mi>x</mi><mn>3</mn></msub><mo>-</mo><mn>0.377</mn></math>

subject to

2x<subs>1</subs> + 2x<subs>2</subs> + x<subs>3</subs> ⩽ 10

x <subs>1</subs> + x<subs>2</subs> + 2x<subs>3</subs> ⩽ 8

x <subs>1</subs>, x<subs>2</subs>, x<subs>3</subs> ⩾ 0

The following is a problem with the worst possible solution:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow></munder><msubsup><mi>F</mi><mn>1</mn><mi>U</mi></msubsup><mo>=</mo><mn>0.349</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>0.328</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>0.0738</mn><msub><mi>x</mi><mn>3</mn></msub><mo>-</mo><mn>1.302</mn></math>

subject to

4x<subs>1</subs> + 3x<subs>2</subs> + 2x<subs>3</subs> ⩽ 20 3x<subs>1</subs> + 5x<subs>2</subs> + 2x<subs>3</subs> ⩽ 30

x <subs>1</subs>, x<subs>2</subs>, x<subs>3</subs> ⩾ 0

As a result, the optimal FLDM solution is [0.4108, 0.4467], with <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>]</mo></mrow><mo>,</mo></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>2</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>3</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> . Let δ<sups>F</sups> = 0.1, where δ<sups>F</sups> is a constant given by the FLDM and is a sufficiently small positive number.

SLDM constraints should now have <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>]</mo></mrow></math> . Following that, here are the SLDM problems:

The following is the problem that needs to be solved in order to get the best solution:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>21</mn><mi>L</mi></msubsup><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>5</mn><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>5</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>6</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>22</mn><mi>L</mi></msubsup><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>7</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>4</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>14</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>23</mn><mi>L</mi></msubsup><mo>=</mo><mn>2</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>4</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>6</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>3</mn></math>

subject to

2x<subs>1</subs> + 2x<subs>2</subs> + x<subs>3</subs> ⩽ 10

x <subs>1</subs> + x<subs>2</subs> + 2x<subs>3</subs> ⩽ 8

x <subs>1</subs> = 5

x <subs>2</subs>, x<subs>3</subs> ⩾ 0 .

The problem for the worst solution is as follows:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>21</mn><mi>U</mi></msubsup><mo>=</mo><mn>2</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>14</mn><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>2</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>17</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>22</mn><mi>U</mi></msubsup><mo>=</mo><mn>3</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>17</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>12</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>19</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>23</mn><mi>U</mi></msubsup><mo>=</mo><mn>4</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>15</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>9</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>10</mn></math>

subject to

4x<subs>1</subs> + 3x<subs>2</subs> + 2x<subs>3</subs> ⩽ 20 3x<subs>1</subs> + 5x<subs>2</subs> + 2x<subs>3</subs> ⩽ 30

x <subs>1</subs> = 5

x <subs>2</subs>, x<subs>3</subs> ⩾ 0

Table 1 shows the individual optimal solutions for the decision variables and the SLDM's objective functions.

The SLDM follows the same steps as the FLDM to arrive at the following results: the SLDM problem's optimal solution is [1.4302, 6.6874], where <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>3</mn><mi>S</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow><mo>.</mo></math>

Now, the FLDM uses the FLDM satisfactoriness test function to determine whether the proposed solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi>S</mi></msubsup></mrow><mo>)</mo></math> is a preferred and acceptable option to him/her, or whether it should be amended.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>=</mo><mn>0</mn><mo>&#60;</mo><msup><mi>&#948;</mi><mi>F</mi></msup></math> ,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>1</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>F</mi><mn>1</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>F</mi><mn>1</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>=</mo><mn>0</mn><mo>&#60;</mo><msup><mi>&#948;</mi><mi>F</mi></msup></math> ,

As a result, the FLDM solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi>S</mi></msubsup></mrow><mo>)</mo></math> is preferred. The SLDM gives the constant δ<sups>S</sups> = 0.1, where δ<sups>S</sups> is a small positive number.

Set <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>]</mo></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> to the TLDM constraints. The TLDM problems are then written as follows:

The following is the problem for which the best solution is sought:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>31</mn><mi>L</mi></msubsup><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>5</mn><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>5</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>6</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>32</mn><mi>L</mi></msubsup><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>7</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>4</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>14</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mn>3</mn></munder><msubsup><mi>f</mi><mn>33</mn><mi>L</mi></msubsup><mo>=</mo><mn>2</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>4</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>6</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>3</mn></math>

subject to

2x<subs>1</subs> + 2x<subs>2</subs> + x<subs>3</subs> ⩽ 10

x <subs>1</subs> + x<subs>2</subs> + 2x<subs>3</subs> ⩽ 8

x <subs>1</subs> = 5, x<subs>2</subs> = 0

x <subs>3</subs> ⩾ 0.

The following is a problem with the worst possible solution:

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>31</mn><mi>U</mi></msubsup><mo>=</mo><mn>2</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>14</mn><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>2</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>17</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>max</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>32</mn><mi>U</mi></msubsup><mo>=</mo><mn>3</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>17</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>12</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>19</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mo>min</mo><mrow><msub><mi>x</mi><mn>3</mn></msub></mrow></munder><msubsup><mi>f</mi><mn>33</mn><mi>U</mi></msubsup><mo>=</mo><mn>4</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>15</mn><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><mn>9</mn><msub><mi>x</mi><mn>3</mn></msub><mo>+</mo><mn>10</mn></math>

subject to

4x<subs>1</subs> + 3x<subs>2</subs> + 2x<subs>3</subs> ⩽ 20 3x<subs>1</subs> + 5x<subs>2</subs> + 2x<subs>3</subs> ⩽ 30

x <subs>1</subs> = 5, x<subs>2</subs> = 0

x <subs>3</subs> ⩾ 0.

Table 1 shows the individual optimal solutions for the decision variables and the TLDM's objective functions.

The TLDM follows the same steps as the FLDM to achieve the following outcomes:

The TLDM problem's optimal solution is [0.5895, 7.6381], where <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>3</mn><mi>T</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> .

Now, the SLDM uses the SLDM satisfactoriness test function to determine whether the offered solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi>T</mi></msubsup></mrow><mo>)</mo></math> is a preferred and acceptable option to him/her, or whether it should be adjusted.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>f</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>f</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>f</mi><mn>2</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>=</mo><mn>0</mn><mo>&#60;</mo><msup><mi>&#948;</mi><mi>S</mi></msup><mo>,</mo></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>f</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>-</mo><msubsup><mi>f</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow><mrow><msub><mrow><mo>&#8741;</mo><mrow><msubsup><mi>f</mi><mn>2</mn><mi>U</mi></msubsup><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>&#8741;</mo></mrow><mn>2</mn></msub></mrow></mfrac><mo>=</mo><mn>0</mn><mo>&#60;</mo><msup><mi>&#948;</mi><mi>S</mi></msup><mo>.</mo></math>

As a result, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mrow><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>,</mo><msubsup><mi>x</mi><mn>3</mn><mi>T</mi></msubsup></mrow><mo>)</mo></math> is the preferred SLDM solution. As a consequence, F<sups>F</sups> = [0.4108, 0.4467], F<sups>S</sups> = [1.4302, 6.6874], and F<sups>T</sups> = [0.5895, 7.6381] are preferred solutions for the NMMLP problem, with optimal decision variables <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>1</mn><mi>F</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>2</mn><mi>S</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>3</mn><mi>T</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> .

<h31 id="AN0161762875-22">Example 7.2.</h31>

Consider the following features of a balanced neutrosophic multi-objective transportation (NMOT) problem:

Supplies:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mn>1</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>18</mn><mo>+</mo><mn>9</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mn>2</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>20</mn><mo>+</mo><mn>17</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mn>3</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>13</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> .

Demands:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>1</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>10</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>2</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>12</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>3</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>14</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>4</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>15</mn><mo>+</mo><mn>13</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> .

Costs:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mn>1</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>(</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo>)</mo></mrow></math> ,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mn>2</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>(</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>9</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mn>3</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>(</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>9</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>9</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo>)</mo></mrow></math>

An NMOT problem is broken into the following two crisp balanced multi-objective transportation problems:

P <sups>L</sups> : min F<sups>L</sups> (x) = (3x<subs>11</subs> + x<subs>12</subs> + 2x<subs>13</subs> + 5x<subs>14</subs> + x<subs>21</subs> + 3x<subs>22</subs> + 4x<subs>23</subs> +3x<subs>24</subs> + 7x<subs>31</subs> + 5x<subs>32</subs> + 6x<subs>33</subs> + 4x<subs>34</subs>, 8x<subs>11</subs> +2x<subs>12</subs> + 4x<subs>13</subs> + 3x<subs>14</subs> + x<subs>21</subs> + 3x<subs>22</subs> + 2x<subs>23</subs> +7x<subs>24</subs> + 6x<subs>31</subs> + x<subs>32</subs> + 8x<subs>33</subs> + 5x<subs>34</subs>, 9x<subs>11</subs> +3x<subs>12</subs> + x<subs>13</subs> + 6x<subs>14</subs> + 4x<subs>21</subs> + 5x<subs>22</subs> + 5x<subs>23</subs> +8x<subs>24</subs> + 2x<subs>31</subs> + 3x<subs>32</subs> + 6x<subs>33</subs> + 7x<subs>34</subs>),

subject to

G <sups>L</sups> = {x<subs>11</subs> + x<subs>12</subs> + x<subs>13</subs> + x<subs>14</subs> = 18

x <subs>21</subs> + x<subs>22</subs> + x<subs>23</subs> + x<subs>24</subs> = 20

x <subs>31</subs> + x<subs>32</subs> + x<subs>33</subs> + x<subs>34</subs> = 13

x <subs>11</subs> + x<subs>21</subs> + x<subs>31</subs> = 10

x <subs>12</subs> + x<subs>22</subs> + x<subs>32</subs> = 12

x <subs>13</subs> + x<subs>23</subs> + x<subs>33</subs> = 14

x <subs>14</subs> + x<subs>24</subs> + x<subs>34</subs> = 15

x <subs>ij</subs> ⩾ 0, (i = 1, 2, 3 ; j = 1, 2, 3, 4)}.

P <sups>U</sups> : minF<sups>U</sups> (x) = (5x<subs>11</subs> + 5x<subs>12</subs> +4x<subs>13</subs> + 6x<subs>14</subs> + 8x<subs>21</subs> + 9x<subs>22</subs> + 9x<subs>23</subs> + 5x<subs>24</subs> + 11x<subs>31</subs> +7x<subs>32</subs> + 14x<subs>33</subs> + 5x<subs>34</subs>, 11x<subs>11</subs> + 9x<subs>12</subs> + 5x<subs>13</subs> + 8x<subs>14</subs> + 7x<subs>21</subs> + 7x<subs>22</subs> + 10x<subs>23</subs> + 14x<subs>24</subs> + 11x<subs>31</subs> +3x<subs>32</subs> + 17x<subs>33</subs> + 9x<subs>34</subs>, 10x<subs>11</subs> + 10x<subs>12</subs> +2x<subs>13</subs> + 10x<subs>14</subs> +12x<subs>21</subs> + 11x<subs>22</subs> + 12x<subs>23</subs> +10x<subs>24</subs> + 7x<subs>31</subs> + 12x<subs>32</subs> + 9x<subs>33</subs> + 9x<subs>34</subs>) ,

subject to

G <sups>U</sups> = {x<subs>11</subs> + x<subs>12</subs> + x<subs>13</subs> + x<subs>14</subs> = 27

x <subs>21</subs> + x<subs>22</subs> + x<subs>23</subs> + x<subs>24</subs> = 37

x <subs>31</subs> + x<subs>32</subs> + x<subs>33</subs> + x<subs>34</subs> = 19

x <subs>11</subs> + x<subs>21</subs> + x<subs>31</subs> = 14

x <subs>12</subs> + x<subs>22</subs> + x<subs>32</subs> = 20

x <subs>13</subs> + x<subs>23</subs> + x<subs>33</subs> = 21

x <subs>14</subs> + x<subs>24</subs> + x<subs>34</subs> = 28

x <subs>ij</subs> ⩾ 0, (i = 1, 2, 3 ; j = 1, 2, 3, 4)}.

Table 2 shows the individual optimal solutions for the decision variables and the balanced NMOT problem's objective functions.

Table 2 Individual optimal solutions for the balanced NMOT problem

<table><colgroup><col align="left" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /></colgroup><thead valign="top"><tr><td /><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>1</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>2</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>3</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>1</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>2</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>3</mn><mi>U</mi></msubsup></math></p></td></tr></thead><tbody><tr><td><italic>x</italic><sub>11</sub></td><td>0</td><td>0</td><td>0</td><td>5</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>12</sub></td><td>4</td><td>0</td><td>0</td><td>1</td><td>0</td><td>6</td></tr><tr><td><italic>x</italic><sub>13</sub></td><td>14</td><td>4</td><td>14</td><td>21</td><td>18</td><td>21</td></tr><tr><td><italic>x</italic><sub>14</sub></td><td>0</td><td>14</td><td>4</td><td>0</td><td>9</td><td>0</td></tr><tr><td><italic>x</italic><sub>21</sub></td><td>10</td><td>10</td><td>0</td><td>9</td><td>14</td><td>0</td></tr><tr><td><italic>x</italic><sub>22</sub></td><td>8</td><td>0</td><td>9</td><td>0</td><td>20</td><td>14</td></tr><tr><td><italic>x</italic><sub>23</sub></td><td>0</td><td>10</td><td>0</td><td>0</td><td>3</td><td>0</td></tr><tr><td><italic>x</italic><sub>24</sub></td><td>2</td><td>0</td><td>11</td><td>28</td><td>0</td><td>23</td></tr><tr><td><italic>x</italic><sub>31</sub></td><td>0</td><td>0</td><td>10</td><td>0</td><td>0</td><td>14</td></tr><tr><td><italic>x</italic><sub>32</sub></td><td>0</td><td>12</td><td>3</td><td>19</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>33</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>34</sub></td><td>13</td><td>1</td><td>0</td><td>0</td><td>19</td><td>5</td></tr><tr><td>Optimal solution</td><td>124</td><td>105</td><td>200</td><td>459</td><td>601</td><td>629</td></tr></tbody></table>

Calculate the UHM<sups>L</sups> and UHM<sups>U</sups> of the optimum values of the objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></math> , (s = 1, 2, 3), respectively. As a result, UHM<sups>L</sups> = 132.812 and UHM<sups>U</sups> = 552.2454.

We apply the harmonic mean technique to reduce the NMOT problem into the following balanced single-objective transportation problems.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msup><mi mathvariant="italic">STP</mi><mi>L</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>L</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>(</mo><mn>0.0362</mn><msub><mi>x</mi><mn>11</mn></msub><mo>+</mo><mn>0.0109</mn><msub><mi>x</mi><mn>12</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0127</mn><msub><mi>x</mi><mn>13</mn></msub><mo>+</mo><mn>0.0254</mn><msub><mi>x</mi><mn>14</mn></msub><mo>+</mo><mn>0.0109</mn><msub><mi>x</mi><mn>21</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0199</mn><msub><mi>x</mi><mn>22</mn></msub><mo>+</mo><mn>0.0199</mn><msub><mi>x</mi><mn>23</mn></msub><mo>+</mo><mn>0.0326</mn><msub><mi>x</mi><mn>24</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0272</mn><msub><mi>x</mi><mn>31</mn></msub><mo>+</mo><mn>0.0163</mn><msub><mi>x</mi><mn>32</mn></msub><mo>+</mo><mn>0.0362</mn><msub><mi>x</mi><mn>33</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.029</mn><msub><mi>x</mi><mn>34</mn></msub></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math> ,

subject to

x ∈ G<sups>L</sups>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msup><mi mathvariant="italic">STP</mi><mi>U</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>U</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>(</mo><mn>0.1958</mn><msub><mi>x</mi><mn>11</mn></msub><mo>+</mo><mn>0.1807</mn><msub><mi>x</mi><mn>12</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0828</mn><msub><mi>x</mi><mn>13</mn></msub><mo>+</mo><mn>0.1807</mn><msub><mi>x</mi><mn>14</mn></msub><mo>+</mo><mn>0.2033</mn><msub><mi>x</mi><mn>21</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.2033</mn><msub><mi>x</mi><mn>22</mn></msub><mo>+</mo><mn>0.2334</mn><msub><mi>x</mi><mn>23</mn></msub><mo>+</mo><mn>0.2184</mn><msub><mi>x</mi><mn>24</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.2184</mn><msub><mi>x</mi><mn>31</mn></msub><mo>+</mo><mn>0.1656</mn><msub><mi>x</mi><mn>32</mn></msub><mo>+</mo><mn>0.3012</mn><msub><mi>x</mi><mn>33</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.1732</mn><msub><mi>x</mi><mn>34</mn></msub></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math> ,

subject to

x ∈ G<sups>U</sups>

The optimal interval solution of the balanced neutrosophic multi-objective transportation problem is <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>11</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>12</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>13</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>12</mn><mo>,</mo><mn>19</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>14</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>6</mn><mo>,</mo><mn>8</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>21</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>10</mn><mo>,</mo><mn>14</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>22</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>23</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>24</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>9</mn><mo>,</mo><mn>20</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>31</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>32</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>11</mn><mo>,</mo><mn>17</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>33</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow><mo>]</mo></mrow></math> , and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>34</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> . F<sups>*</sups> = [0.9788, 14.2605] is the optimal interval minimum transportation cost.

<h31 id="AN0161762875-23">Example 7.3.</h31>

Consider the following features of an unbalanced NMOT problem:

Supplies:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mn>1</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>9</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mn>2</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>11</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>a</mi><mn>3</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>21</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> .

Demands:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>1</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>13</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>2</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>10</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>3</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>b</mi><mn>4</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>13</mn><mi>I</mi></mrow><mo>]</mo></mrow></math> .

Costs:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mn>1</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>(</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo>)</mo></mrow></math> ,

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mn>2</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>(</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>9</mn><mo>+</mo><mn>6</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>9</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo>)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mn>3</mn><mi>N</mi></msubsup><mo>=</mo><mrow><mo>(</mo><mrow><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>7</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>4</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>3</mn><mo>+</mo><mn>3</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>6</mn><mo>+</mo><mn>2</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>2</mn><mo>+</mo><mn>7</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>9</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>5</mn><mo>+</mo><mn>8</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd><mtd columnalign="center"><mrow><mtable><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>8</mn><mo>+</mo><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center"><mrow><mo>[</mo><mrow><mn>4</mn><mo>+</mo><mn>5</mn><mi>I</mi></mrow><mo>]</mo></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></mrow></mrow><mo>)</mo></mrow></math>

An unbalanced NMOT problem is broken into the following two crisp unbalanced multi-objective transportation problems:

P <sups>L</sups> : min F<sups>L</sups> (x) = (4x<subs>11</subs> + 2x<subs>12</subs> + x<subs>13</subs> + 8x<subs>14</subs> +3x<subs>21</subs> + x<subs>22</subs> + 6x<subs>23</subs> + 2x<subs>24</subs> + 6x<subs>31</subs> + 5x<subs>32</subs> + 7x<subs>33</subs> +4x<subs>34</subs>, 6x<subs>11</subs> + x<subs>12</subs> + 3x<subs>13</subs> + 4x<subs>14</subs> + 7x<subs>21</subs> + 9x<subs>22</subs> +6x<subs>23</subs> + 6x<subs>24</subs> + 5x<subs>31</subs> + 4x<subs>32</subs> + 2x<subs>33</subs> + 7x<subs>34</subs>, 8x<subs>11</subs> +6x<subs>12</subs> + 4x<subs>13</subs> + 7x<subs>14</subs> + 5x<subs>21</subs> + 6x<subs>22</subs> + 9x<subs>23</subs> + 8x<subs>24</subs> +3x<subs>31</subs> + 2x<subs>32</subs> + 5x<subs>33</subs> + 4x<subs>34</subs>)

subject to

x <subs>11</subs> + x<subs>12</subs> + x<subs>13</subs> + x<subs>14</subs> = 9

x <subs>21</subs> + x<subs>22</subs> + x<subs>23</subs> + x<subs>24</subs> = 5

x <subs>31</subs> + x<subs>32</subs> + x<subs>33</subs> + x<subs>34</subs> = 21

x <subs>11</subs> + x<subs>21</subs> + x<subs>31</subs> = 13

x <subs>12</subs> + x<subs>22</subs> + x<subs>32</subs> = 10

x <subs>13</subs> + x<subs>23</subs> + x<subs>33</subs> = 5

x <subs>14</subs> + x<subs>24</subs> + x<subs>34</subs> = 7

x <subs>ij</subs> ⩾ 0, (i = 1, 2, 3 ; j = 1, 2, 3, 4).

P <sups>U</sups> : minF<sups>U</sups> (x) = (7x<subs>11</subs> + 6x<subs>12</subs> + 8x<subs>13</subs> +10x<subs>14</subs> + 5x<subs>21</subs> + 8x<subs>22</subs> + 10x<subs>23</subs> + 5x<subs>24</subs> +11x<subs>31</subs> + 10x<subs>32</subs> + 8x<subs>33</subs> + 10x<subs>34</subs>, 8x<subs>11</subs> +6x<subs>12</subs> + 7x<subs>13</subs> + 6x<subs>14</subs> + 10x<subs>21</subs> + 15x<subs>22</subs> +9x<subs>23</subs> + 10x<subs>24</subs> + 9x<subs>31</subs> + 9x<subs>32</subs> + 11x<subs>33</subs> +15x<subs>34</subs>, 10x<subs>11</subs> + 7x<subs>12</subs> + 7x<subs>13</subs> + 9x<subs>14</subs> +9x<subs>21</subs> + 8x<subs>22</subs> + 10x<subs>23</subs> + 9x<subs>24</subs> + 6x<subs>31</subs> +9x<subs>32</subs> + 13x<subs>33</subs> + 9x<subs>34</subs>) ,

subject to

x <subs>11</subs> + x<subs>12</subs> + x<subs>13</subs> + x<subs>14</subs> = 12

x <subs>21</subs> + x<subs>22</subs> + x<subs>23</subs> + x<subs>24</subs> = 16

x <subs>31</subs> + x<subs>32</subs> + x<subs>33</subs> + x<subs>34</subs> = 29

x <subs>11</subs> + x<subs>21</subs> + x<subs>31</subs> = 18

x <subs>12</subs> + x<subs>22</subs> + x<subs>32</subs> = 12

x <subs>13</subs> + x<subs>23</subs> + x<subs>33</subs> = 7

x <subs>14</subs> + x<subs>24</subs> + x<subs>34</subs> = 20

x <subs>ij</subs> ⩾ 0, (i = 1, 2, 3 ; j = 1, 2, 3, 4).

Table 3 shows the individual optimal solutions for the decision variables and the unbalanced NMOT problem's objective functions.

Table 3 Individual optimal solutions for the unbalanced NMOT problem

<table><colgroup><col align="left" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /><col align="center" /></colgroup><thead valign="top"><tr><td /><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>1</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>2</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>3</mn><mi>L</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>1</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>2</mn><mi>U</mi></msubsup></math></p></td><td><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>f</mi><mn>3</mn><mi>U</mi></msubsup></math></p></td></tr></thead><tbody><tr><td><italic>x</italic><sub>11</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>12</sub></td><td>4</td><td>9</td><td>0</td><td>12</td><td>1</td><td>5</td></tr><tr><td><italic>x</italic><sub>13</sub></td><td>5</td><td>0</td><td>5</td><td>0</td><td>0</td><td>7</td></tr><tr><td><italic>x</italic><sub>14</sub></td><td>0</td><td>0</td><td>4</td><td>0</td><td>11</td><td>0</td></tr><tr><td><italic>x</italic><sub>21</sub></td><td>0</td><td>0</td><td>5</td><td>16</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>22</sub></td><td>5</td><td>0</td><td>0</td><td>0</td><td>0</td><td>7</td></tr><tr><td><italic>x</italic><sub>23</sub></td><td>0</td><td>0</td><td>0</td><td>0</td><td>7</td><td>0</td></tr><tr><td><italic>x</italic><sub>24</sub></td><td>0</td><td>5</td><td>0</td><td>0</td><td>9</td><td>9</td></tr><tr><td><italic>x</italic><sub>31</sub></td><td>13</td><td>13</td><td>8</td><td>2</td><td>18</td><td>18</td></tr><tr><td><italic>x</italic><sub>32</sub></td><td>1</td><td>1</td><td>10</td><td>0</td><td>11</td><td>0</td></tr><tr><td><italic>x</italic><sub>33</sub></td><td>0</td><td>5</td><td>0</td><td>7</td><td>0</td><td>0</td></tr><tr><td><italic>x</italic><sub>34</sub></td><td>7</td><td>2</td><td>3</td><td>20</td><td>0</td><td>11</td></tr><tr><td>Optimal solution</td><td>129</td><td>132</td><td>129</td><td>430</td><td>486</td><td>428</td></tr></tbody></table>

Calculate the UHM<sups>L</sups> and UHM<sups>U</sups> of the optimum values of the objective functions <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>L</mi></mrow></msubsup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>f</mi><mi>s</mi><mrow><mo>*</mo><mi>U</mi></mrow></msubsup></math> , (s = 1, 2, 3), respectively. As a result, UHM<sups>L</sups> = 129.9847 and UHM<sups>U</sups> = 446.4523.

We apply the harmonic mean technique to reduce the NMOT problem into the following unbalanced single-objective transportation problems.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msup><mi mathvariant="italic">STP</mi><mi>L</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>L</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>(</mo><mn>0.0403</mn><msub><mi>x</mi><mn>11</mn></msub><mo>+</mo><mn>0.0202</mn><msub><mi>x</mi><mn>12</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0179</mn><msub><mi>x</mi><mn>13</mn></msub><mo>+</mo><mn>0.0426</mn><msub><mi>x</mi><mn>14</mn></msub><mo>+</mo><mn>0.0336</mn><msub><mi>x</mi><mn>21</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0358</mn><msub><mi>x</mi><mn>22</mn></msub><mo>+</mo><mn>0.047</mn><msub><mi>x</mi><mn>23</mn></msub><mo>+</mo><mn>0.0358</mn><msub><mi>x</mi><mn>24</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0314</mn><msub><mi>x</mi><mn>31</mn></msub><mo>+</mo><mn>0.0246</mn><msub><mi>x</mi><mn>32</mn></msub><mo>+</mo><mn>0.0314</mn><msub><mi>x</mi><mn>33</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.0336</mn><msub><mi>x</mi><mn>34</mn></msub></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math> ,

subject to

x ∈ G<sups>L</sups>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd columnalign="center"><msup><mi mathvariant="italic">STP</mi><mi>U</mi></msup><mo>:</mo><mo>min</mo><msup><mi>F</mi><mi>U</mi></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>(</mo><mn>0.1923</mn><msub><mi>x</mi><mn>11</mn></msub><mo>+</mo><mn>0.1462</mn><msub><mi>x</mi><mn>12</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.1693</mn><msub><mi>x</mi><mn>13</mn></msub><mo>+</mo><mn>0.1923</mn><msub><mi>x</mi><mn>14</mn></msub><mo>+</mo><mn>0.1846</mn><msub><mi>x</mi><mn>21</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.2385</mn><msub><mi>x</mi><mn>22</mn></msub><mo>+</mo><mn>0.2231</mn><msub><mi>x</mi><mn>23</mn></msub><mo>+</mo><mn>0.1846</mn><msub><mi>x</mi><mn>24</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.2</mn><msub><mi>x</mi><mn>31</mn></msub><mo>+</mo><mn>0.2154</mn><msub><mi>x</mi><mn>32</mn></msub><mo>+</mo><mn>0.2462</mn><msub><mi>x</mi><mn>33</mn></msub></mtd></mtr><mtr><mtd columnalign="center"><mo>+</mo><mn>0.2616</mn><msub><mi>x</mi><mn>34</mn></msub></mtd></mtr><mtr><mtd columnalign="center" /></mtr></mtable></math> ,

subject to

x ∈ G<sups>U</sups>

The optimal interval solution of the unbalanced neutrosophic multi-objective transportation problem is <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>11</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>12</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>13</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>5</mn><mo>,</mo><mn>7</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>14</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>4</mn><mo>,</mo><mn>5</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>21</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>22</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>23</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>24</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>3</mn><mo>,</mo><mn>14</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>31</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>13</mn><mo>,</mo><mn>18</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>32</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>8</mn><mo>,</mo><mn>10</mn></mrow><mo>]</mo></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>33</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow><mo>]</mo></mrow></math> , and <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>x</mi><mn>34</mn><mo>*</mo></msubsup><mo>=</mo><mrow><mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo>]</mo></mrow></math> . F<sups>*</sups> = [1.0439, 11.2236] is the optimal interval minimum transportation cost.

8 Conclusion

The neutrosophic multi-objective multi-level linear programming (NMMLP) problems were modelled using an interactive technique in this paper. Each neutrosophic problem was turned into two crisp multi-objective linear problems using the interval method in the proposed manner. The concept of harmonic means was then applied to combine the multiple objectives of each crisp problem into a single objective. Then, an interactive method for obtaining the preferred solution to the provided NMMLP problems has been devised. Finally, in a neutrosophic environment, an application to determine the optimality for the cost of multi-objective transportation problem is described. Numerical examples were presented to test the method's validity.

References

1 Ammar E.E. and Khalifa H.A., On fuzzy multi-objective multiitem solid transportation problems,1–19T, International Journal of Computer & Organization Trends. 17 (2015).

2 Ammar E.E. and Youness E.A., Study on multiobjective transportation problem with fuzzy numbers, Applied Mathematics and Computation. 166 (2005), 241-253.

3 Arora R. and Gupta K., Multi-level integer programming problem with multiple objectives at each level, Investigacion Operational. 40 (2019), 313-329.

4 Banerjee D. and Pramanik S., Single-objective linear goal programming problem with neutrosophic numbers, Infinite Study (2018).

5 Edalatpanah S.A., A direct model for triangular neutrosophic linear programming, International Journal of Neutrosophic Science. 1 (2020), 19-28.

6 Garg H. and Rizk-Allah R.M., A novel approach for solving rough multi-objective transportation problem: development and prospects, Computational and Applied Mathematics. 40 (2021), 1-24.

7 Han J., Lu J. and Zhang G., Tri-level decision-making for decentralized vendor-managed inventory, Information Sciences. 421 (2017), 85-103.

8 Han J., Zhang G., Hu Y. and Lu J., A solution to bi/tri-level programming problems using particle swarm optimization, Information Sciences. 370 (2016), 519-537.

9 Kouchakinejad F., Mashinchi M. and Khorram E., Fuzzy multi-objective optimization of linear functions subject to max-arithmetic mean rational inequality constraints, Scientia Iranica. 24 (2017), 1561-1570.

Liu P. and Liu X., The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making, International Journal of Machine Learning and Cybernetics. 9 (2018), 347-358.

Liu Q.M. and Yang Y.M., Interactive programming approach for solving multi-level multi-objective linear programming problem, Journal of Intelligent and Fuzzy Systems. 35 (2018), 55-61.

Lu J., Han J., Hu Y. and Zhang G., Multilevel decision-making: A survey, Information Sciences. 346 (2016), 463-487.

Mahmoudi A., Feylizadeh M.R., Darvishi D. and Liu S., Grey-fuzzy solution for multi-objective linear programming with interval coefficients, Grey Systems: Theory and Application (2018).

Mondal K., Pramanik S., Giri B.C. and Smarandache F., NN-harmonic mean aggregation operators-based MCGDM strategy in a neutrosophic number environment, Axioms. 7 (2018), 12.

Moore R.E. and Yang C.T., Interval analysis, Englewood-Cliffs, N J: Prentice-Hall (1996).

Muruganadam S. and Ambika P., Harmonic mean technique to solve multi objective fuzzy linear fractional programming problems, Global Journal of Pure and Applied Mathematics. 13 (2017), 7321-7329.

Osman M.S., Abo-Sinna M.A., Amer A.H. and Emam O., A multi-level non-linear multi-objective decision-making under fuzziness, Applied Mathematics and Computation. 153 (2004), 239-252.

Prabha S.K., An innovative method to unravel neutroshopic transportation problem using harmonic mean, International Journal of Fuzzy System Applications (IJFSA). 10 (2021), 55-66.

Pramanik S. and Banerjee D., Neutrosophic number goal programming for multi-objective linear programming problem in neutrosophic number environment, Infinite Study (2018).

Pramanik S. and Dey P.P., Multi-level linear programming problem with neutrosophic numbers: A goal programming strategy, Infinite Study (2019).

Pramanik S. and Mallick R., VIKOR based MAGDM strategy with trapezoidal neutrosophic numbers, Neutrosophic Sets and Systems. 22 (2018), 118-129.

Ramadan K., Linear programming with interval coefficients, Doctoral dissertation, Carleton University (1997).

Sen C., A new approach for multi-objective rural development planning, The Indian Economic Journal. 30 (1983), 91-96.

Shaocheng, Interval number and fuzzy number linear programmings, Fuzzy Sets and Systems, 66 (1994), 301-306.

Singh A., Arora R. and Arora S., Bilevel transportation problem in neutrosophic environment, Computational and Applied Mathematics. 41 (2022), 1-25.

Smarandache F., A unifying field of logics, neutrosophy: Neutrosophic probability, set and logic, (1999), 1–141.

Smarandache F., Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability, Infinite Study (2013).

Smarandache F. and Khalid H.E., Neutrosophic precalculus and neutrosophic calculus, Infinite Study (2018).

Sohag Z.I. and Asadujjaman M., A proposed new average method for solving multi-objective linear programming problem using various kinds of mean techniques, Math Lett. 4 (2018), 25-33.

Sulaiman N.A. and Mustafa R.B., Using harmonic mean to solve multi-objective linear programming problems, American Journal of Operations Research. 6 (2016), 25-30.

Sulaiman N.A. and Mustafa R.B., Transform extreme point multi-objective linear programming problem to extreme point single objective linear programming problem by using harmonic mean, Applied Mathematics. 6 (2016), 95-99.

Veeramani C., Edalatpanah S.A. and Sharanya S., Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach, Discrete Dynamics in Nature and Society (2021).

Wang K., Pesch E., Kress D., Fridman L. and Boysen N., The piggyback transportation problem: transporting drones launched from a flying warehouse, European Journal of Operational Research. 296 (2022), 504-519.

Xu Z., Fuzzy harmonic mean operators, International Journal of Intelligent Systems. 24 (2009), 152-172.

By E. Fathy and E. Ammar

Reported by Author; Author