Result: РеÑение инÑеÑвалÑной линейной задаÑи о допÑÑÐºÐ°Ñ Ð¼ÐµÑодом ÑаÑпознаÑÑего ÑÑнкÑионала: вÑпÑÑÐºÐ½Ð°Ñ ÐºÐ²Ð°Ð»Ð¸ÑикаÑÐ¸Ð¾Ð½Ð½Ð°Ñ ÑабоÑа бакалавÑа
Further Information
ÐÐ°Ð½Ð½Ð°Ñ ÑабоÑа поÑвÑÑена иÑÑледованиÑ, поÑÑиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð¸ ÑÑкоÑÐµÐ½Ð¸Ñ Ð¿ÑогÑÐ°Ð¼Ð¼Ñ tolsolvty, коÑоÑÐ°Ñ Ð¿Ð¾Ð»Ð½Ð¾ÑÑÑÑ Ð¾Ð¿ÑеделÑÐµÑ ÑазÑеÑимоÑÑÑ Ð¸Ð½ÑеÑвалÑной линейной задаÑи о допÑÑкаÑ
меÑодом ÑаÑпознаÑÑего ÑÑнкÑионала. ÐадаÑи, коÑоÑÑе ÑеÑалиÑÑ Ð² Ñ
оде иÑÑледованиÑ: 1. ÐÑÑледование пÑименимоÑÑи пÑогÑÐ°Ð¼Ð¼Ñ tolsolvty. 2. ÐаÑ
ождение ÑÑпеÑдиÑÑеÑенÑиала ÑаÑпознаÑÑего ÑÑнкÑионала Ð´Ð»Ñ Ð¾Ð±Ð¾ÑÐ½Ð¾Ð²Ð°Ð½Ð¸Ñ Ð²ÑÑиÑÐ»ÐµÐ½Ð¸Ñ ÐµÐ³Ð¾ ÑÑпеÑгÑадиенÑа в пÑогÑамме tolsolvty. 3. ÐоÑÑиÑование пÑогÑÐ°Ð¼Ð¼Ñ tolsolvty на ÑзÑк пÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Python. 4. УÑкоÑение ÑеализаÑий пÑогÑÐ°Ð¼Ð¼Ñ tolsolvty. ÐÑли пÑÐ¾Ð²ÐµÐ´ÐµÐ½Ñ Ð¼Ð°ÑемаÑиÑеÑкие иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸ вÑÑиÑлиÑелÑнÑе ÑкÑпеÑименÑÑ Ð¿Ð¾ ÑеÑÐµÐ½Ð¸Ñ ÑиповÑÑ
Ð·Ð°Ð´Ð°Ñ Ð¼Ð°Ð»Ð¾Ð¹, ÑÑедней и болÑÑой ÑазмеÑноÑÑей, ÑгенеÑиÑованнÑÑ
ÑлÑÑайнÑм обÑазом, Ð´Ð»Ñ Ð¸Ð½ÑеÑвалÑной модели межоÑÑаÑлевого ÑкономиÑеÑкого баланÑа на ÑзÑкаÑ
пÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ MATLAB, GNU Octave, Scilab и Python. Ð ÑезÑлÑÑаÑе бÑли полÑÑÐµÐ½Ñ Ð»ÐµÐ³ÐºÐ¾ пÑовеÑÑемое ÑÑловие пÑименимоÑÑи пÑогÑÐ°Ð¼Ð¼Ñ tolsolvty и алгоÑиÑм Ð´Ð»Ñ Ð½Ð°Ñ
Ð¾Ð¶Ð´ÐµÐ½Ð¸Ñ ÑÑпеÑдиÑÑеÑенÑиала ÑаÑпознаÑÑего ÑÑнкÑионала â показано, ÑÑо пÑогÑамма tolsolvty коÑÑекÑно вÑÑиÑлÑÐµÑ ÐµÐ³Ð¾ ÑÑпеÑгÑадиенÑ. ÐапиÑана ÑеализаÑÐ¸Ñ Ð¿ÑогÑÐ°Ð¼Ð¼Ñ tolsolvty на ÑзÑке пÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Python. Ðо много Ñаз ÑÑкоÑÐµÐ½Ñ ÑеализаÑии пÑогÑÐ°Ð¼Ð¼Ñ tolsolvty на ÑзÑкаÑ
пÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ MATLAB, GNU Octave, Scilab и Python.
The given work is devoted to studying, porting and speeding up the program tolsolvty, which completely determines the solvability of the interval linear tolerance problem by the recognizing functional method. The research set the following goals: 1. Studying the applicability of the program tolsolvty. 2. Finding the superdifferential of the recognizing functional to justify the calculation of its supergradient in the program tolsolvty. 3. Porting the program tolsolvty to the programming language Python. 4. Speeding up the program tolsolvty implementations. Mathematical researches and computational experiments to solve typical problems of small, medium and large dimensions, randomly generated, for an interval input-output model in the programming languages MATLAB, GNU Octave, Scilab and Python were made. The study resulted into getting an easily verifiable condition for the applicablity of the program tolsolvty and an algorithm for finding the superdifferential of the recognizing functional â it was shown, that the program tolsolvty correctly calculates its supergradient. The implementation of the program tolsolvty was written in the programming language Python. The implementations of the program tolsolvty in the programming languages MATLAB, GNU Octave, Scilab and Python were sped up many times.