Result: A simple proof of a curious congruence by Zhao
Title:
A simple proof of a curious congruence by Zhao
Authors:
Source:
Proceedings of the American Mathematical Society. 133:3469-3472
Publisher Information:
American Mathematical Society (AMS), 2005.
Publication Year:
2005
Subject Terms:
Document Type:
Academic journal
Article<br />Other literature type
File Description:
application/xml
Language:
English
ISSN:
1088-6826
0002-9939
0002-9939
DOI:
10.1090/s0002-9939-05-07939-6
Access URL:
https://www.ams.org/proc/2005-133-12/S0002-9939-05-07939-6/S0002-9939-05-07939-6.pdf
https://zbmath.org/2199859
https://doi.org/10.1090/s0002-9939-05-07939-6
https://www.ams.org/journals/proc/2005-133-12/S0002-9939-05-07939-6/home.html
https://dialnet.unirioja.es/servlet/articulo?codigo=1377304
https://www.jstor.org/stable/4097488
https://zbmath.org/2199859
https://doi.org/10.1090/s0002-9939-05-07939-6
https://www.ams.org/journals/proc/2005-133-12/S0002-9939-05-07939-6/home.html
https://dialnet.unirioja.es/servlet/articulo?codigo=1377304
https://www.jstor.org/stable/4097488
Accession Number:
edsair.doi.dedup.....015ccd7fcbfb5aad28f5976edd78db00
Database:
OpenAIRE
Further Information
The author gives a simple proof of the following curious congruence for odd prime p > 3 p>3 which was established by Jianqiang Zhao: ∑ i + j + k = p i , j , k > 0 1 i j k ≡ − 2 B p − 3 ( mod p ) . \begin{equation*}\sum _{\substack {{i+j+k=p} {i,\ j,\ k>0}}}\frac {1}{ijk}\equiv -2B_{p-3}(\text {mod}\ p).\end{equation*}