Result: Bernoulli–Dedekind sums: Bernoulli-Dedekind sums

Title:
Bernoulli–Dedekind sums: Bernoulli-Dedekind sums
Source:
Acta Arithmetica. 149:65-82
Publication Status:
Preprint
Publisher Information:
Institute of Mathematics, Polish Academy of Sciences, 2011.
Publication Year:
2011
Document Type:
Academic journal Article
File Description:
application/xml
Language:
English
ISSN:
1730-6264
0065-1036
DOI:
10.4064/aa149-1-5
DOI:
10.48550/arxiv.1008.0038
Rights:
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....0264ae29af1d7bedcfb0722b037ba7f4
Database:
OpenAIRE

Further Information

Let $p_1,p_2,\dots,p_n, a_1,a_2,\dots,a_n \in \N$, $x_1,x_2,\dots,x_n \in \R$, and denote the $k$th periodized Bernoulli polynomial by $\B_k(x)$. We study expressions of the form \[ \sum_{h \bmod{a_k}} \ \prod_{\substack{i=1\\ i\not=k}}^{n} \ \B_{p_i}\left(a_i \frac{h+x_k}{a_k}-x_i\right). \] These \highlight{Bernoulli--Dedekind sums} generalize and unify various arithmetic sums introduced by Dedekind, Apostol, Carlitz, Rademacher, Sczech, Hall--Wilson--Zagier, and others. Generalized Dedekind sums appear in various areas such as analytic and algebraic number theory, topology, algebraic and combinatorial geometry, and algorithmic complexity. We exhibit a reciprocity theorem for the Bernoulli--Dedekind sums, which gives a unifying picture through a simple combinatorial proof.
14 pages